Casein Kinase 2 Regulates the NR2 Subunit Composition of Synaptic NMDA Receptors

Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
Neuron (Impact Factor: 15.98). 09/2010; 67(6):984-96. DOI: 10.1016/j.neuron.2010.08.011
Source: PubMed

ABSTRACT N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a central role in development, synaptic plasticity, and neurological disease. NMDAR subunit composition defines their biophysical properties and downstream signaling. Casein kinase 2 (CK2) phosphorylates the NR2B subunit within its PDZ-binding domain; however, the consequences for NMDAR localization and function are unclear. Here we show that CK2 phosphorylation of NR2B regulates synaptic NR2B and NR2A in response to activity. We find that CK2 phosphorylates NR2B, but not NR2A, to drive NR2B-endocytosis and remove NR2B from synapses resulting in an increase in synaptic NR2A expression. During development there is an activity-dependent switch from NR2B to NR2A at cortical synapses. We observe an increase in CK2 expression and NR2B phosphorylation over this same critical period and show that the acute activity-dependent switch in NR2 subunit composition at developing hippocampal synapses requires CK2 activity. Thus, CK2 plays a central role in determining the NR2 subunit content of synaptic NMDARs.

Download full-text


Available from: Antonio Sanz-Clemente, May 28, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug-evoked synaptic plasticity in the mesolimbic dopamine (DA) system reorganizes neural circuits that may lead to addictive behavior. The first cocaine exposure potentiates AMPAR excitatory postsynaptic currents (EPSCs) onto DA neurons of the VTA but reduces the amplitude of NMDAR-EPSCs. While plasticity of AMPAR transmission is expressed by insertion of calcium (Ca(2+))-permeable GluA2-lacking receptors, little is known about the expression mechanism for altered NMDAR transmission. Combining ex vivo patch-clamp recordings, mouse genetics, and subcellular Ca(2+) imaging, we observe that cocaine drives the insertion of NMDARs that are quasi-Ca(2+)-impermeable and contain GluN3A and GluN2B subunits. These GluN3A-containing NMDARs appear necessary for the expression of cocaine-evoked plasticity of AMPARs. We identify an mGluR1-dependent mechanism to remove these noncanonical NMDARs that requires Homer/Shank interaction and protein synthesis. Our data provide insight into the early cocaine-driven reorganization of glutamatergic transmission onto DA neurons and offer GluN3A-containing NMDARs as new targets in drug addiction.
    Neuron 10/2013; 80(4). DOI:10.1016/j.neuron.2013.07.050 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic activity triggers a profound reorganization of the molecular composition of excitatory synapses. For example, NMDA receptors are removed from synapses in an activity- and calcium-dependent manner, via casein kinase 2 (CK2) phosphorylation of the PDZ ligand of the GluN2B subunit (S1480). However, how synaptic activity drives this process remains unclear because CK2 is a constitutively active kinase, which is not directly regulated by calcium. We show here that activated CaMKII couples GluN2B and CK2 to form a trimolecular complex and increases CK2-mediated phosphorylation of GluN2B S1480. In addition, a GluN2B mutant, which contains an insert to mimic the GluN2A sequence and cannot bind to CaMKII, displays reduced S1480 phosphorylation and increased surface expression. We find that although disrupting GluN2B/CaMKII binding reduces synapse number, it increases synaptic-GluN2B content. Therefore, the GluN2B/CaMKII association controls synapse density and PSD composition in an activity-dependent manner, including recruitment of CK2 for the removal of GluN2B from synapses.
    Cell Reports 03/2013; 3(3). DOI:10.1016/j.celrep.2013.02.011 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The numbers and types of ionotropic glutamate receptors at most vertebrate central excitatory synapses are altered as a function of changes in input activity patterns that occur during postnatal development. Activity-dependent developmental alterations in glutamate receptors underlie lasting changes in synaptic efficacy (plasticity) and metaplasticity (the plasticity of synaptic plasticity), which are critical elements of normal brain maturation. Understanding the specific involvement of glutamate receptors in synaptic development and function is made multiplicatively complex by the existence of a large number of glutamate receptor subunits, numerous subunit-specific amino acid sequences that regulate receptor function, and subunit-specific synaptic insertion restrictions imposed by associated anchoring proteins. Many receptor properties are altered when subunits are switched, so it is unclear which individual receptor property or properties underlie changes in synaptic function and plasticity during postnatal development. As a result, a more detailed understanding of the factors that regulate synaptic and cognitive development will involve mutations in glutamate receptor subunits that separate individual receptor properties and permit synaptic insertion at both immature and mature synapses in genetically modified organisms. This position paper focuses on structural modifications in N-methyl-d-aspartate receptors (NMDARs) that occur during postnatal forebrain development and attempts to provide a method for pursuing a more complete understanding of the functional ramifications of developmental alterations in NMDAR subunit composition.
    Biological Bulletin 02/2013; 224(1):1-13. · 1.57 Impact Factor