Article

Mechanisms and cell signaling in alcoholic liver disease.

Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.
Biological Chemistry (Impact Factor: 2.69). 11/2010; 391(11):1249-64. DOI: 10.1515/BC.2010.137
Source: PubMed

ABSTRACT Alcoholic liver disease (ALD) remains a major cause of morbidity and mortality worldwide. For example, the Veterans Administration Cooperative Studies reported that patients with cirrhosis and superimposed alcoholic hepatitis had a 4-year mortality of >60%. The poor prognosis of ALD implies that preventing disease progression would be more effective than treating end-stage liver disease. An obvious avenue of prevention would be to remove the damaging agent; however, the infamously high rate of recidivism in alcoholics makes maintaining abstinence a difficult treatment goal to prevent ALD. Indeed, although the progression of ALD is well-characterized, there is no universally accepted therapy available to halt or reverse this process in humans. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of ALD, rational targeted therapy can be developed to treat or prevent ALD. The purpose of this review is to summarize the established and proposed mechanisms by which chronic alcohol abuse damages the liver and to highlight key signaling events known or hypothesized to mediate these effects.

0 Bookmarks
 · 
180 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic liver disease (ALD) is the commonest cause of cirrhosis in many Western countries and it has a high rate of morbidity and mortality. The pathogenesis is characterized by complex interactions between metabolic intermediates of alcohol. Bacterial intestinal flora is itself responsible for production of endogenous ethanol through the fermentation of carbohydrates. The intestinal metabolism of alcohol produces a high concentration of toxic acetaldehyde that modifies gut permeability and microbiota equilibrium. Furthermore it causes direct hepatocyte damage. In patients who consume alcohol over a long period, there is a modification of gut microbiota and, in particular, an increment of Gram negative bacteria. This causes endotoxemia and hyperactivation of the immune system. Endotoxin is a constituent of Gram negative bacteria cell walls. Two types of receptors, cluster of differentiation 14 and Toll-like receptors-4, present on Kupffer cells, recognize endotoxins. Several studies have demonstrated the importance of gut-liver axis and new treatments have been studied in recent years to reduce progression of ALD modifying gut microbiota. It has focused attention on antibiotics, prebiotics, probiotics and synbiotics.
    World journal of gastroenterology : WJG. 11/2014; 20(44):16639-16648.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The harmful use of alcohol is a worldwide problem. It has been estimated that alcohol abuse represents the world's third largest risk factor for disease and disability; it is a causal factor of 60 types of diseases and injuries and a concurrent cause of at least 200 others. Liver is the main organ responsible for metabolizing ethanol, thus it has been considered for long time the major victim of the harmful use of alcohol. Ethanol and its bioactive products, acetaldehyde-acetate, fatty acid ethanol esters, ethanol-protein adducts, have been regarded as hepatotoxins that directly and indirectly exert their toxic effect on the liver. A similar mechanism has been postulated for the alcohol-related pancreatic damage. Alcohol and its metabolites directly injure acinar cells and elicit stellate cells to produce and deposit extracellular matrix thus triggering the "necrosis-fibrosis" sequence that finally leads to atrophy and fibrosis, morphological hallmarks of alcoholic chronic pancreatitis. Even if less attention has been paid to the upper and lower gastrointestinal tract, ethanol produces harmful effects by inducing: (1) direct damaging of the mucosa of the esophagus and stomach; (2) modification of the sphincterial pressure and impairment of motility; and (3) alteration of gastric acid output. In the intestine, ethanol can damage the intestinal mucosa directly or indirectly by altering the resident microflora and impairing the mucosal immune system. Notably, disruption of the intestinal mucosal barrier of the small and large intestine contribute to liver damage. This review summarizes the most clinically relevant alcohol-related diseases of the digestive tract focusing on the pathogenic mechanisms by which ethanol damages liver, pancreas and gastrointestinal tract.
    World journal of gastroenterology : WJG. 10/2014; 20(40):14652-14659.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that Lactobacillus rhamnosus GG culture supernatant (LGGs) prevents acute-alcohol-exposure-induced hepatic steatosis and injury. The protective effects of LGGs were attributed to the improved intestinal barrier function leading to decreased endotoxemia. The purpose of this study was to determine whether LGGs was effective in protecting against chronic-alcohol-induced hepatic steatosis and injury and to evaluate the underlying mechanisms of LGGs on hepatic lipid metabolism. C57BL/6N mice were fed liquid diet containing 5% alcohol or pair-fed isocaloric maltose dextrin for 4 weeks. LGGs at a dose equivalent to 10(9) CFU/day/mouse was given in the liquid diet. Hepatic steatosis, liver enzymes and hepatic apoptosis were analyzed. LGGs prevented alcohol-mediated increase in hepatic expression of lipogenic genes, sterol regulatory element binding protein-1 and stearoyl-CoA desaturase-1 and increased the expression of peroxisome proliferator activated receptor-α, peroxisome proliferator-activated receptor gamma coactivator protein-1α and carnitine palmitoyltransferase-1, leading to increased fatty acid β-oxidation. Importantly, chronic alcohol exposure decreased adenosine-monophosphate-activated protein kinase (AMPK) phosphorylation and increased acetyl-CoA carboxylase activity, which were attenuated by LGGs administration. LGGs also decreased Bax expression and increased Bcl-2 expression, which attenuated alcohol-induced hepatic apoptosis. These LGGs-regulated molecular changes resulted in the attenuation of chronic-alcohol-exposure-mediated increase in hepatic fat accumulation and liver injury. Probiotic LGG culture supernatant is effective in the prevention of chronic-alcohol-exposure-induced hepatic steatosis and injury. LGGs likely exerts its beneficial effects, at least in part, through modulation of hepatic AMPK activation and Bax/Bcl-2-mediated apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.
    The Journal of nutritional biochemistry. 12/2014;