Article

Phonon-mediated versus coulombic backaction in quantum dot circuits.

Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München, Germany.
Physical Review Letters (Impact Factor: 7.73). 05/2010; 104(19):196801. DOI: 10.1103/PhysRevLett.104.196801
Source: arXiv

ABSTRACT Quantum point contacts (QPCs) are commonly employed to detect capacitively the charge state of coupled quantum dots (QDs). An indirect backaction of a biased QPC onto a double QD laterally defined in a GaAs/AlGaAs heterostructure is observed. Energy is emitted by nonequilibrium charge carriers in the leads of the biased QPC. Part of this energy is absorbed by the double QD where it causes charge fluctuations that can be observed under certain conditions in its stability diagram. By investigating the spectrum of the absorbed energy, we find that both acoustic phonons and Coulomb interaction can be involved in the backaction, depending on the geometry and coupling constants.

0 Bookmarks
 · 
61 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spin qubits have been successfully realized in electrostatically defined, lateral few-electron quantum dot circuits. Qubit readout typically involves spin to charge information conversion, followed by a charge measurement made using a nearby biased quantum point contact. It is critical to understand the back-action disturbances resulting from such a measurement approach. Previous studies have indicated that quantum point contact detectors emit phonons which are then absorbed by nearby qubits. We report here the observation of a pronounced back-action effect in multiple dot circuits where the absorption of detector-generated phonons is strongly modified by a quantum interference effect, and show that the phenomenon is well described by a theory incorporating both the quantum point contact and coherent phonon absorption. Our combined experimental and theoretical results suggest strategies to suppress back-action during the qubit readout procedure.
    Nature Physics 01/2013; · 19.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The capacitive couplings between gate-defined quantum dots and their gates vary considerably as a function of applied gate voltages. The conversion between gate voltages and the relevant energy scales is usually performed in a regime of rather symmetric dot-lead tunnel couplings strong enough to allow direct transport measurements. Unfortunately, this standard procedure fails for weak and possibly asymmetric tunnel couplings, often the case in realistic devices. We have developed methods to determine the gate voltage to energy conversion accurately in the different regimes of dot-lead tunnel couplings and demonstrate strong variations of the conversion factors. Our concepts can easily be extended to triple quantum dots or even larger arrays.
    The Review of scientific instruments 12/2011; 82(12):123905. · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Managing energy dissipation is critical to the scaling of current microelectronics and to the development of novel devices that use quantum coherence to achieve enhanced functionality. To this end, strategies are needed to tailor the electron-phonon interaction, which is the dominant mechanism for cooling non-equilibrium ('hot') carriers. In experiments aimed at controlling the quantum state, this interaction causes decoherence that fundamentally disrupts device operation. Here, we show a contrasting behaviour, in which strong electron-phonon scattering can instead be used to generate a robust mode for electrical conduction in GaAs quantum point contacts, driven into extreme non-equilibrium by nanosecond voltage pulses. When the amplitude of these pulses is much larger than all other relevant energy scales, strong electron-phonon scattering induces an attraction between electrons in the quantum-point-contact channel, which leads to the spontaneous formation of a narrow current filament and to a renormalization of the electronic states responsible for transport. The lowest of these states coalesce to form a sub-band separated from all others by an energy gap larger than the source voltage. Evidence for this renormalization is provided by a suppression of heating-related signatures in the transient conductance, which becomes pinned near 2e(2)/h (e, electron charge; h, Planck constant) for a broad range of source and gate voltages. This collective non-equilibrium mode is observed over a wide range of temperature (4.2-300 K) and may provide an effective means to manage electron-phonon scattering in nanoscale devices.
    Nature Nanotechnology 01/2014; · 31.17 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from