Las B-galactosidasas y la dinámica de la pared celular

Interciencia (Impact Factor: 0.19).
Source: OAI


La pared celular es crucial en la determinación del crecimiento y desarrollo de la célula vegetal. En la mayoría de las angiospermas existen muchos glucanos entrelazados sobre una infraestructura de celulosa. El monosacárido galactosa es un constituyente clave de la mayor parte de los polisacáridos no celulósicos en las paredes celulares vegetales: fucogalacto-xiloglucanos, cadenas de (1?3), (1?6)ß-D-galactano tipo II, proteínas con arabinogalactanos, (1?4)ß-D-galactanos y los arabinogalactanos tipo I. Cada uno de estos componentes exhibe un metabolismo diferente durante etapas específicas del crecimiento y desarrollo celular. Por ejemplo, se han observado alteraciones durante el ensamblaje o remodelación de la pared celular a través de la hidrólisis de galactósidos o galactanos de la pared, que ocurren antecediendo ciertos eventos del desarrollo, tales como el inicio de la maduración de los frutos y el inicio de la formación de haces fibrosos en lino. No se han encontrado endo-galactanasas en plantas, por lo que se responsabiliza a las exo-galactanasas/ß-galactosidasas por la hidrólisis de todos los polímeros que contienen galactosa en la pared celular. Esta revisión examina los polímeros que contienen galactosa en la pared celular y propone una función y rol biológico para las ß-galactosidasas vegetales en el contexto de la dinámica del crecimiento celular.

91 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of expression of specific genes by antisense RNA is a naturally occurring mechanism in bacteria1,2, although gene regulation by this mechanism has not yet been observed in higher eukaryotes. However, antisense RNA has been shown to reduce expression of specific genes when injected into frog oocytes3 and Drosophila embryos4. Inhibition of expression of artificially introduced genes has been demonstrated by transient expression of antisense RNA constructs in mammalian cells5,6, and plant protoplasts7, and by stable expression in transgenic plants8. Here, we report a striking inhibition of expression of the endogenous, developmentally regulated gene for polygalacturonase in stably transformed tomato expressing antisense RNA.
    08/1988; 334(6184):724-726. DOI:10.1038/334724a0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellulose and xyloglucan (XG) assemble to form the cellulose/XG network, which is considered to be the dominant load-bearing structure in the growing cell walls of non-graminaceous land plants. We have extended the most commonly accepted model for the macromolecular organization of XG in this network, based on the structural and quantitative analysis of three distinct XG fractions that can be differentially extracted from the cell walls isolated from etiolated pea stems. Approximately 8% of the dry weight of these cell walls consists of XG that can be solubilized by treatment of the walls with a XG-specific endoglucanase (XEG). This material corresponds to an enzyme-susceptible XG domain, proposed to form the cross-links between cellulose microfibrils. Another 10% of the cell wall consists of XG that can be solubilized by concentrated KOH after XEG treatment. This material constitutes another XG domain, proposed to be closely associated with the surface of the cellulose microfibrils. An additional 3% of the cell wall consists of XG that can be solubilized only when the XEG- and KOH-treated cell walls are treated with cellulase. This material constitutes a third XG domain, proposed to be entrapped within or between cellulose microfibrils. Analysis of the three fractions indicates that metabolism is essentially limited to the enzyme-susceptible domain. These results support the hypothesis that enzyme-catalyzed modification of XG cross-links in the cellulose/XG network is required for the growth and development of the primary plant cell wall, and demonstrate that the structural consequences of these metabolic events can be analyzed in detail.
    The Plant Journal 11/1999; 20(6):629 - 639. DOI:10.1046/j.1365-313X.1999.00630.x · 5.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lily (Lilium auratum) pollen contains very high levels of β-galactosidase. There are three forms: β-galactosidase I and II differ in Mr, while β-galactosidase III is firmly bound in the pollen wall. The two cytoplasmic forms were separated and partially purified using a combination of chromatography on DEAE-cellulose, Sephadex G-200 and Sepharose 6B. Forms I and II appear to be glycoprotein in nature as shown by binding to Con A-Sepharose. The three enzymes were optimally active near pH 4, and all were inhibited by galactose and galactonolactone. The wall-bound enzyme, β-galactosidase III effectively hydrolysed nitrophenyl β-galactosidase but not lactose, and could not be released from the wall polysaccharide matrix by high salt concentrations or detergents. The total β-galactosidase activity of lily pollen remained constant during in vitro germination. A possible role for this enzyme may be in degradation of stylar arabinogalactans providing a carbon source for pollen tube nutrition.
    Phytochemistry 12/1985; 24(8):1639-1643. DOI:10.1016/S0031-9422(00)82526-1 · 2.55 Impact Factor
Show more