Heparin-binding EGF-like growth factor protects pericytes from injury.

Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA.
Journal of Surgical Research (Impact Factor: 2.02). 01/2012; 172(1):165-76. DOI: 10.1016/j.jss.2010.07.058
Source: PubMed

ABSTRACT We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) promotes angiogenesis and preserves mesenteric microvascular blood flow in several models of intestinal injury. The current study was designed to evaluate the effect of HB-EGF on pericytes, since these cells function to regulate capillary blood flow and new capillary growth.
C3H/10T1/2 mouse mesenchymal cells were differentiated into pericyte-like cells in vitro using transforming growth factor-β1 (TGF-β1). In addition, primary pericyte cultures were established from rat brain. The effect of HB-EGF on pericyte proliferation was assessed. In addition, cells were stressed by exposure to anoxia, and apoptosis determined. In vivo, we examined the effect of HB-EGF on pericytes in a model of intestinal I/R injury based on superior mesenteric artery occlusion (SMAO) in mice.
Differentiated C3H/10T1/2 cells (pericyte-like cells) demonstrated morphologic characteristics of pericytes, and expressed pericyte specific markers. Addition of HB-EGF led to significant cell proliferation in differentiated pericyte-like cells, even under conditions of anoxic stress. Addition of the EGF receptor inhibitor AG 1478 led to complete inhibition of the proliferative effects of HB-EGF on pericyte-like cells. In addition, HB-EGF protected pericyte-like cells from anoxia-induced apoptosis. In addition, HB-EGF promoted cell proliferation in primary pericyte cultures. In vivo, administration of HB-EGF to mice subjected to intestinal I/R injury led to protection of pericytes from injury.
These results suggest that HB-EGF may function as a microcirculatory blood flow regulator, at least in part, via its effects on pericytes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have shown that administration of heparin-binding EGF (epidermal growth factor)-like growth factor (HB-EGF) protects the intestines from experimental necrotizing enterocolitis (NEC). We have also demonstrated that systemically administered mesenchymal stem cells (MSC) can engraft into injured intestines. This study investigated the effects of HB-EGF on MSC in vitro, and whether MSC and HB-EGF can act synergistically to prevent NEC in vivo. In vitro, the effect of HB-EGF on MSC proliferation, migration, and apoptosis was determined. In vivo, rat pups received MSC either intraperitoneally (IP) or intravenously (IV). Pups were assigned to 1 of 7 groups: Group 1, breast-fed; Group 2, experimental NEC; Group 3, NEC+HB-EGF; Group 4, NEC+MSC IP; Group 5, NEC+HB-EGF+MSC IP; Group 6, NEC+MSC IV; or Group 7, NEC+HB-EGF+MSC IV. Mesechymal stem cell engraftment, histologic injury, intestinal permeability, and mortality were determined. Heparin-binding EGF-like growth factor promoted MSC proliferation and migration, and decreased MSC apoptosis in vitro. In vivo, MSC administered IV had increased engraftment into NEC-injured intestine compared with MSC administered IP (p < 0.05). Heparin binding EGF-like growth factor increased engraftment of IP-administered MSC (p < 0.01) and IV-administered MSC (p < 0.05). Pups in Groups 3 to 7 had a decreased incidence of NEC compared with nontreated pups (Group 2), with the lowest incidence in pups treated with HB-EGF+MSC IV (p < 0.01). Pups in Group 7 had a significantly decreased incidence of intestinal dilation and perforation, and had the lowest intestinal permeability, compared with other treatment groups (p < 0.01). Pups in all experimental groups had significantly improved survival compared with pups exposed to NEC, with the best survival in Group 7 (p < 0.05). Heparin-binding EGF-like growth factor and MSC act synergistically to reduce injury and improve survival in experimental NEC.
    Journal of the American College of Surgeons 07/2012; 215(4):534-45. · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Throughout the past 20 years, we have been investigating the potential therapeutic roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor family, in various models of intestinal injury including necrotizing enterocolitis (NEC), intestinal ischemia/reperfusion (I/R) injury, and hemorrhagic shock and resuscitation (HS/R). Our studies have demonstrated that HB-EGF acts as an effective mitogen, a restitution-inducing reagent, a cellular trophic factor, an anti-apoptotic protein and a vasodilator, via its effects on various cell types in the intestine. In the current paper, we have reviewed the application and therapeutic effects of HB-EGF in three classic animal models of intestinal injury, with particular emphasis on its protection of the intestines from NEC. Additionally, we have summarized the protective functions of HB-EGF on various target cells in the intestine. Lastly, we have provided a brief discussion focusing on the future development of HB-EGF clinical applications for the treatment of various forms of intestinal injury including NEC.
    Pathophysiology 12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite its limited regenerative capacity, the central nervous system (CNS) shares more repair mechanisms with peripheral tissues than previously recognized. Scar formation is a ubiquitous healing mechanism aimed at patching tissue defects via the generation of fibrous extracellular matrix (ECM). This process, orchestrated by stromal cells, can unfavorably affect the capacity of tissues to restore function. Vascular mural cells have been found to contribute to scarring after spinal cord injury. In the case of stroke, little is known about the responses of pericytes (PCs) and stromal cells. Here, we show that capillary PCs are rapidly lost after cerebral ischemia in both experimental and human stroke. Coincident with this loss is a massive proliferation of resident platelet-derived growth factor receptor beta (PDGFRβ)(+) and CD105(+) stromal cells, which originate from the neurovascular unit and deposit ECM in the ischemic mouse brain. The presence of PDGFRβ(+) stromal cells demarcates a fibrotic, contracted, and macrophage-laden lesion core from the rim of hypertrophic astroglia in both experimental and human stroke. We suggest that a previously unrecognized population of CNS-resident stromal cells drives a dynamic process of scarring after cerebral ischemia, which appears distinct from the glial scar and represents a novel target for regenerative stroke therapies.Journal of Cerebral Blood Flow & Metabolism advance online publication, 19 December 2012; doi:10.1038/jcbfm.2012.187.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 12/2012; · 5.46 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014