Heparin-Binding EGF-Like Growth Factor Protects Pericytes from Injury

Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA.
Journal of Surgical Research (Impact Factor: 1.94). 01/2012; 172(1):165-76. DOI: 10.1016/j.jss.2010.07.058
Source: PubMed


We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) promotes angiogenesis and preserves mesenteric microvascular blood flow in several models of intestinal injury. The current study was designed to evaluate the effect of HB-EGF on pericytes, since these cells function to regulate capillary blood flow and new capillary growth.
C3H/10T1/2 mouse mesenchymal cells were differentiated into pericyte-like cells in vitro using transforming growth factor-β1 (TGF-β1). In addition, primary pericyte cultures were established from rat brain. The effect of HB-EGF on pericyte proliferation was assessed. In addition, cells were stressed by exposure to anoxia, and apoptosis determined. In vivo, we examined the effect of HB-EGF on pericytes in a model of intestinal I/R injury based on superior mesenteric artery occlusion (SMAO) in mice.
Differentiated C3H/10T1/2 cells (pericyte-like cells) demonstrated morphologic characteristics of pericytes, and expressed pericyte specific markers. Addition of HB-EGF led to significant cell proliferation in differentiated pericyte-like cells, even under conditions of anoxic stress. Addition of the EGF receptor inhibitor AG 1478 led to complete inhibition of the proliferative effects of HB-EGF on pericyte-like cells. In addition, HB-EGF protected pericyte-like cells from anoxia-induced apoptosis. In addition, HB-EGF promoted cell proliferation in primary pericyte cultures. In vivo, administration of HB-EGF to mice subjected to intestinal I/R injury led to protection of pericytes from injury.
These results suggest that HB-EGF may function as a microcirculatory blood flow regulator, at least in part, via its effects on pericytes.

Download full-text


Available from: Chun-Liang Chen, Mar 18, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many key cellular interactions involve mechanotransduction (MT), whereby forces applied by other cells or by the matrix lead to biochemical and morphological sequellae. Since MT may be a useful target of molecular therapies, I have developed a rapid assay for it: the flow cytomechanical assay (FCMA). The assay exposes suspended cells to graded hydrostatic challenges prior to their entry into a standard flow cytometer. Preliminary results on 7 cell types have shown that FCMA can measure key aspects of MT at a rate of 10,000 cells per minute. FCMA could be a useful screening tool for agents and materials that involve MT.
    01/2002; 1. DOI:10.1109/IEMBS.2002.1134517
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pericytes, the mural cells of blood microvessels, have recently come into focus as regulators of vascular morphogenesis and function during development, cardiovascular homeostasis, and disease. Pericytes are implicated in the development of diabetic retinopathy and tissue fibrosis, and they are potential stromal targets for cancer therapy. Some pericytes are probably mesenchymal stem or progenitor cells, which give rise to adipocytes, cartilage, bone, and muscle. However, there is still confusion about the identity, ontogeny, and progeny of pericytes. Here, we review the history of these investigations, indicate emerging concepts, and point out problems and promise in the field of pericyte biology.
    Developmental Cell 08/2011; 21(2):193-215. DOI:10.1016/j.devcel.2011.07.001 · 9.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have shown that heparin-binding epidermal growth factor-like growth factor (HB-EGF) protects the intestines from injury in several different animal models, including hemorrhagic shock and resuscitation (HS/R). The current study was designed to explore the mechanisms underlying the anti-inflammatory role of HB-EGF in preservation of gut barrier function after injury. In vivo, HS/R was induced in wild-type and neutropenic mice, with or without administration of HB-EGF, and intestinal permeability determined by use of the everted gut sac method. In vitro, cultured human umbilical vein endothelial cells (HUVECs) and freshly isolated human peripheral blood mononuclear cells (PMNs) were used to determine the effects of HB-EGF on HUVEC-PMN adhesion, reactive oxygen species production in PMN, adhesion molecule expression in HUVEC and PMN, and the signaling pathways involved. We found that administration of HB-EGF to healthy mice led to preservation of gut barrier function after HS/R. Likewise, induction of neutropenia in mice also led to preservation of gut barrier function after HS/R. Administration of HB-EGF to neutropenic mice did not lead to further improvement in gut barrier function. In vitro studies showed that HB-EGF decreased neutrophil-endothelial cell (PMN-EC) adherence by down-regulating adhesion molecule expression in EC via the phosphoinositide 3-kinase-Akt pathway, and by inhibiting adhesion molecule surface mobilization and reactive oxygen species production in PMN. These results indicate that HB-EGF preserves gut barrier function by inhibiting PMN and EC activation, thereby blocking PMN-EC adherence after HS/R in mice, and support the future use of HB-EGF in disease states manifested by hypoperfusion injury.
    Surgery 12/2011; 151(4):594-605. DOI:10.1016/j.surg.2011.10.001 · 3.38 Impact Factor
Show more