Article

Generación de electricidad a partir de una celda de combustible microbiana tipo pem

Interciencia: Revista de ciencia y tecnología de América, ISSN 0378-1844, Vol. 33, Nº. 7, 2008, pags. 503-509 01/2008;
Source: OAI

ABSTRACT Se empleó una celda de combustible microbiana (CCM) a escala de laboratorio para la generación de electricidad. La celda consistió de dos cámaras separadas por una membrana de intercambio protónico (PEM). Se utilizaron electrodos de papel carbón y un catolito acuoso burbujeado con aire para proveer O2 disuelto al electrodo. La generación de potencia en la CCM, se debió a la presencia de bacterias como biocatalizadores en la cámara del ánodo. Las bacterias fueron obtenidas de un inóculo mixto anaerobio de tipo entérico, empleando agua residual sintética (ARS) como sustrato. Se determinó la influencia de la temperatura y el pH sobre el rendimiento de la CCM, encontrando que la mayor densidad de potencia fue generada a temperatura mesofílica de 35 ±5°C y pH entre 5 y 6. Empleando resistencias de 600 y 1000W se obtuvieron densidades de 640 y 336mW·m-2, respectivamente. La eficiencia coulómbica obtenida fue de 59,8%. Este tipo de sistemas resultan atractivos para la generación de electricidad y a la vez para la degradación de la fracción orgánica.

0 0
 · 
0 Bookmarks
 · 
132 Views
  • Source
    Communications in agricultural and applied biological sciences 02/2006; 71(1):63-6.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Conventional anaerobic digestion based bioconversion processes produce biogas and have as such been widely applied for the production of renewable energy so far. An innovative technology, based on the use of microbial fuel cells, is considered as a new pathway for bioconversion processes towards electricity. In comparison with conventional anaerobic digestion, the microbial fuel cell technology holds some specific advantages, such as its applicability for the treatment of low concentration substrates at temperatures below 20 °C, where anaerobic digestion generally fails to function. This provides some specific application niches of the microbial fuel cell technology where it does not compete with but complements the anaerobic digestion technology. However, microbial fuel cells still face important limitations in terms of large-scale application. The limitations involve the investment costs, upscale technical issues and the factors limiting the performance, both in terms of anodic and cathodic electron transfer. Research to render the microbial fuel cell technology more economically feasible and applicable should focus on reactor configuration, power density and the material costs.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The performance of a microbial fuel cell (MFC) depends on a complex system of parameters. Apart from technical variables like the anode or fuel cell design, it is mainly the paths and mechanisms of the bioelectrochemical energy conversion that decisively determine the MFC power and energy output. Here, the electron transfer from the microbial cell to the fuel cell anode, as a process that links microbiology and electrochemistry, represents a key factor that defines the theoretical limits of the energy conversion. The determination of the energy efficiency of the electron transfer reactions, based on the biological standard potentials of the involved redox species in combination with the known paths (and stoichiometry) of the underlying microbial metabolism, is an important instrument for this discussion. Against the sometimes confusing classifications of MFCs in literature it is demonstrated that the anodic electron transfer is always based on one and the same background: the exploitation of the necessity of every living cell to dispose the electrons liberated during oxidative substrate degradation.
    Physical Chemistry Chemical Physics 07/2007; 9(21):2619-29. · 3.83 Impact Factor