Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods.

Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
Journal of Assisted Reproduction and Genetics (Impact Factor: 1.82). 12/2010; 27(12):671-82. DOI: 10.1007/s10815-010-9473-9
Source: PubMed

ABSTRACT the aim of the present study is to compare three previously described mouse embryonic stem cell derivation methods to evaluate the influence of culture conditions, number of isolated blastomeres and embryonic stage in the derivation process.
three embryonic stem cell derivation methods: standard, pre-adhesion and defined culture medium method, were compared in the derivation from isolated blastomeres and whole embryos at 4- and 8-cell stages.
a total of 200 embryonic stem cell lines were obtained with an efficiency ranging from 1.9% to 72%.
using either isolated blastomeres or whole embryos, the highest rates of mouse embryonic stem cell establishment were achieved with the defined culture medium method and efficiencies increased as development progressed. Using isolated blastomeres, efficiencies increased in parallel to the proportion of the embryo volume used to start the derivation process.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Can transforming growth factor β (TGFβ) inhibition promote ground state pluripotency of embryonic stem cells (ESCs) from single blastomeres (SBs) of cleavage embryos in different mouse stains?
    Human reproduction (Oxford, England). 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efforts to efficiently derive embryonic stem cells (ESC) from isolated blastomeres have been done to minimize ethical concerns about human embryo destruction. Previous studies in our laboratory indicated a poor derivation efficiency of mouse ESC lines from isolated blastomeres at the 8-cell stage (1/8 blastomeres) due, in part, to a low division rate of the single blastomeres in comparison to their counterparts with a higher number of blastomeres (2/8, 3/8 and 4/8 blastomeres). Communication and adhesion between blastomeres from which the derivation process begins could be important aspects to efficiently derive ESC lines. In the present study, an approach consisting in the adhesion of a chimeric E-cadherin (E-cad-Fc) to the blastomere surface was devised to recreate the signaling produced by native E-cadherin between neighboring blastomeres inside the embryo. By this approach, the division rate of 1/8 blastomeres increased from 44.6% to 88.8% and a short exposure of 24 h to the E-cad-Fc produced an ESC derivation efficiency of 33.6%, significantly higher than the 2.2% obtained from the control group without E-cad-Fc. By contrast, a longer exposure to the same chimeric protein resulted in higher proportions of trophoblastic vesicles. Thus, we establish an important role of E-cadherin-mediated adherens junctions in promoting both the division of single 1/8 blastomeres and the efficiency of the ESC derivation process.
    Stem cell reviews 12/2010; 7(3):494-505. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parthenogenetic embryonic stem cells have pluripotent differentiation potentials, akin to fertilized embryo-derived embryonic stem cells. The aim of this study was to compare the neuronal differentiation potential of parthenogenetic and fertilized embryo-derived embryonic stem cells. Before differentiation, karyotype analysis was performed, with normal karyotypes detected in both parthenogenetic and fertilized embryo-derived embryonic stem cells. Sex chromosomes were identified as XX. Immunocytochemistry and quantitative real-time PCR detected high expression of the pluripotent gene, Oct4, at both the mRNA and protein levels, indicating pluripotent differentiation potential of the two embryonic stem cell subtypes. Embryonic stem cells were induced with retinoic acid to form embryoid bodies, and then dispersed into single cells. Single cells were differentiated in N2 differentiation medium for 9 days. Immunocytochemistry showed parthenogenetic and fertilized embryo-derived embryonic stem cells both express the neuronal cell markers nestin, βIII-tubulin and myelin basic protein. Quantitative real-time PCR found expression of neurogenesis related genes (Sox-1, Nestin, GABA, Pax6, Zic5 and Pitx1) in both types of embryonic stem cells, and Oct4 expression was significantly decreased. Nestin and Pax6 expression in parthenogenetic embryonic stem cells was significantly higher than that in fertilized embryo-derived embryonic stem cells. Thus, our experimental findings indicate that parthenogenetic embryonic stem cells have stronger neuronal differentiation potential than fertilized embryo-derived embryonic stem cells.
    Neural Regeneration Research 02/2013; 8(4):293-300. · 0.14 Impact Factor


Available from