Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease.

Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York, USA.
PLoS ONE (Impact Factor: 3.53). 09/2010; 5(9). DOI: 10.1371/journal.pone.0012845
Source: PubMed

ABSTRACT The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr protein kinase that plays a pivotal role in multiple fundamental biological processes, including synaptic plasticity. We explored the relationship between the mTOR pathway and β-amyloid (Aβ)-induced synaptic dysfunction, which is considered to be critical in the pathogenesis of Alzheimer's disease (AD).
We provide evidence that inhibition of mTOR signaling correlates with impairment in synaptic plasticity in hippocampal slices from an AD mouse model and in wild-type slices exposed to exogenous Aβ1-42. Importantly, by up-regulating mTOR signaling, glycogen synthase kinase 3 (GSK3) inhibitors rescued LTP in the AD mouse model, and genetic deletion of FK506-binding protein 12 (FKBP12) prevented Aβ-induced impairment in long-term potentiation (LTP). In addition, confocal microscopy demonstrated co-localization of intraneuronal Aβ42 with mTOR.
These data support the notion that the mTOR pathway modulates Aβ-related synaptic dysfunction in AD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reductions in hippocampal neurite complexity and synaptic plasticity are believed to contribute to the progressive impairment in episodic memory and the mild cognitive decline that occur particularly in the early stages of Alzheimer's disease (AD). Despite the functional and therapeutic importance for patients with AD, intervention to rescue or normalize dendritic elaboration and synaptic plasticity is scarcely provided. Here we show that overexpression of neuritin, an activity-dependent protein, promoted neurite outgrowth and maturation of synapses in parallel with enhanced basal synaptic transmission in cultured hippocampal neurons. Importantly, exogenous application of recombinant neuritin fully restored dendritic complexity as well as spine density in hippocampal neurons prepared from Tg2576 mice, whereas it did not affect neurite branching of neurons from their wild-type littermates. We also showed that soluble recombinant neuritin, when chronically infused into the brains of Tg2576 mice, normalized synaptic plasticity in acute hippocampal slices, leading to intact long-term potentiation. By revealing the protective actions of soluble neuritin against AD-related neural defects, we provide a potential therapeutic approach for patients with AD.
    Cell Death & Disease 11/2014; 5:e1523. · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Environmental enrichment showed anti-numbing/avoidance effects in a model of PTSD.•Environmental enrichment activated autophagy signaling in rat hippocampus.•The importance of autophagy in neuroplasticity and stress-resilience was suggested.
    Brain Research 10/2014; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator.
    Journal of Neuroscience 10/2014; 34(43):14210-8. · 6.75 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014

Charles Hoeffer