Time-Dependent Effects of Corticosteroids on Human Amygdala Processing

Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, 6500 HB Nijmegen, The Netherlands.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 09/2010; 30(38):12725-32. DOI: 10.1523/JNEUROSCI.3112-10.2010
Source: PubMed

ABSTRACT Acute stress is associated with a sensitized amygdala. Corticosteroids, released in response to stress, are suggested to restore homeostasis by normalizing/desensitizing brain processing in the aftermath of stress. Here, we investigated the effects of corticosteroids on amygdala processing using functional magnetic resonance imaging. Since corticosteroids exert rapid nongenomic and slow genomic effects, we administered hydrocortisone either 75 min (rapid effects) or 285 min (slow effects) before scanning in a randomized, double-blind, placebo-controlled design. Seventy-two healthy males were scanned while viewing faces morphing from a neutral facial expression into fearful or happy expressions. Imaging results revealed that hydrocortisone desensitizes amygdala responsivity rapidly, while it selectively normalizes responses to negative stimuli slowly. Psychophysiological interaction analyses suggested that this slow normalization is related to an altered coupling of the amygdala with the medial prefrontal cortex. These results reveal a temporarily fine-tuned mechanism that is critical for avoiding amygdala overshoot during stress and enabling adequate recovery thereafter.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal studies show that exposure to parental neglect alters stress regulation and can lead to neural hyposensitivity or hypersensitivity in response to cortisol, most pronounced in the hippocampus. Cortisol, the end product of the hypothalamic-pituitary-adrenal (HPA) axis, has also been related to parenting more directly, for example, in both sexes, cortisol levels increase when listening to infants crying, possibly to activate and facilitate effective care behavior. Severe trauma is known to negatively affect the HPA-axis in humans; however, it is unknown whether normal variation in parental care in the healthy population can alter sensitivity of the hippocampus to cortisol. Here, we investigate whether variation in experienced neglect changes neural sensitivity to cortisol when humans listen to infant crying, which is an unequivocal signal relevant for care behavior. In a placebo-controlled, within-subject neuroimaging study, we administered 40 mg cortisol to 21 healthy young males without children and used a validated task for measuring neural responses to infant crying. The Dutch version of the Childhood Trauma Questionnaire was used to index participants' early exposure to abuse and neglect. The data show that cortisol markedly increased hippocampal activation toward crying infants, and this effect varied significantly with parental neglect, even in our nonclinical subject sample. Without exposure to severe trauma or neglect, reduced self-experienced quality of parental care in the normal range already substantially increased hippocampal responsivity to cortisol. Altered hippocampal sensitivity to cortisol might be a cross-species marker for the risk of developing later life psychopathology. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 10/2014; 35(10). DOI:10.1002/hbm.22537 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corticosteroids induce rapid non-genomic effects followed by slower genomic effects that are thought to modulate cognitive function in opposite and complementary ways. It is presently unknown how these time-dependent effects of cortisol affect fear memory of delay and trace conditioning. This distinction is of special interest because the neural substrates underlying these types of conditioning may be differently affected by time-dependent cortisol effects. Delay conditioning is predominantly amygdala-dependent, while trace conditioning additionally requires the hippocampus. Here, we manipulated the timing of cortisol action during acquisition of delay and trace fear conditioning, by randomly assigning 63 men to one of three possible groups: (1) receiving 10 mg hydrocortisone 240 min (slow cort) or (2) 60 min (rapid cort) before delay and trace acquisition, or (3) placebo at both times, in a double-blind design. The next day, we tested memory for trace and delay conditioning. Fear potentiated startle responses, skin conductance responses and unconditioned stimulus expectancy scores were measured throughout the experiment. The fear potentiated startle data show that cortisol intake 240 min before actual fear acquisition (slow cort) uniquely strengthened subsequent trace conditioned memory. No effects of cortisol delivery 60 min prior to fear acquisition were found on any measure of fear memory. Our findings emphasize that slow, presumably genomic, but not more rapid effects of corticosteroids enhance hippocampal-dependent fear memories. On a broader level, our findings underline that basic experimental research and clinically relevant pharmacological treatments employing corticosteroids should acknowledge the timing of corticosteroid administration relative to the learning phase, or therapeutic intervention.
    Psychoneuroendocrinology 02/2014; 40:257–268. DOI:10.1016/j.psyneuen.2013.11.013 · 5.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homeostasis of the human stress response system is critically maintained by a hierarchical system of neural and endocrine elements for which intact negative feedback is important to prevent maladaptation towards stress. Such feedback is efficiently probed by the established combined dexamethasone-suppression/corticotropin-releasing hormone stimulation (dex/CRH) test. Here we investigate which suprahypothalamic networks might modulate the response assessed by this neuroendocrine test. Combined resting state fMRI (rs-fMRI)/EEG was acquired in 20 healthy male volunteers along with dex/CRH profiles obtained on a different day outside the scanner. Seed-based network analysis and inter-seed cross correlation analysis for selected atlas-based limbic, paralimbic and medial prefrontal cortex seeds were correlated with stimulated cortisol and adrenocorticotropin hormone (ACTH) concentrations. Lower connectivity between a left hippocampus-based network and the right hippocampus significantly predicted stimulated cortisol concentration (R(2)=0.70, corrected p(cluster)=0.001). Six further significantly negative correlations were detected mainly in the left anterior cingulate cortex (ACC) and the medial prefrontal cortex (mPFC). The strongest positive correlation with stimulated hormone concentration was detected for the left subcallosal ACC (ACTH, R(2)=0.57, corrected p(cluster)=0.009). Inter-seed connectivity mainly pointed to hippocampal/amygdala interactions as correlates of the dex/CRH response. In conclusion, resting state functional connectivity patterns of limbic, particularly hippocampal, as well as cingulate and medial prefrontal areas can explain some of the variance of the dex/CRH test in healthy subjects. Functional connectivity analysis can be considered useful to study supra-hypothalamic control systems of the HPA axis.
    Psychoneuroendocrinology 12/2012; 38(8). DOI:10.1016/j.psyneuen.2012.11.021 · 5.59 Impact Factor