Article

Differential Roles for Endothelial ICAM-1, ICAM-2, and VCAM-1 in Shear-Resistant T Cell Arrest, Polarization, and Directed Crawling on Blood-Brain Barrier Endothelium

Theodor Kocher Institute, University of Bern, Bern, Switzerland.
The Journal of Immunology (Impact Factor: 5.36). 10/2010; 185(8):4846-55. DOI: 10.4049/jimmunol.0903732
Source: PubMed

ABSTRACT Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.

Full-text

Available from: Ruth Lyck, Apr 18, 2015
1 Follower
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.
    PLoS ONE 07/2014; 9(7):e102598. DOI:10.1371/journal.pone.0102598 · 3.53 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upregulation of intercellular adhesion molecule 1 (ICAM-1) is an early event in lesion formation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Monitoring its expression may provide a biomarker for early disease activity and allow validation of anti-inflammatory interventions. Our objective was therefore to explore whether ICAM-1 expression can be visualized in vivo during EAE with magnetic resonance imaging (MRI) using micron-sized particles of iron oxide (MPIO), and to compare accumulation profiles of targeted and untargeted MPIO, and a gadolinium-containing agent. Targeted αICAM-1-MPIO/untargeted IgG-MPIO were injected at two model-characteristic phases of EAE (in myelin oligodendrocyte glycoprotein35–55-immunized C57BL/6 J mice), that is, at the peak of the acute phase (14 ± 1 days post-immunization) and during the chronic phase (26 ± 1 days post-immunization), followed by T2*-weighted MRI. Blood–brain barrier (BBB) permeability was measured using gadobutrol-enhanced MRI. Cerebellar microvessels were analyzed for ICAM-1 mRNA expression using quantitative PCR (qPCR). ICAM-1 and iron oxide presence was examined with immunohistochemistry (IHC). During EAE, ICAM-1 was expressed by brain endothelial cells, macrophages and T-cells as shown with qPCR and (fluorescent) IHC. EAE animals injected with αICAM-1-MPIO showed MRI hypointensities, particularly in the subarachnoid space. αICAM-1-MPIO presence did not differ between the phases of EAE and was not associated with BBB dysfunction. αICAM-1-MPIO were associated with endothelial cells or cells located at the luminal side of blood vessels. In conclusion, ICAM-1 expression can be visualized with in vivo molecular MRI during EAE, and provides an early tracer of disease activity. Copyright © 2014 John Wiley & Sons, Ltd.
    Contrast Media & Molecular Imaging 04/2014; DOI:10.1002/cmmi.1602 · 3.33 Impact Factor