Differential Roles for Endothelial ICAM-1, ICAM-2, and VCAM-1 in Shear-Resistant T Cell Arrest, Polarization, and Directed Crawling on Blood-Brain Barrier Endothelium

Theodor Kocher Institute, University of Bern, Bern, Switzerland.
The Journal of Immunology (Impact Factor: 4.92). 10/2010; 185(8):4846-55. DOI: 10.4049/jimmunol.0903732
Source: PubMed


Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.

Download full-text


Available from: Ruth Lyck,
  • Source
    • "Consistent with this fact, it is shown that combinational treatment with anti-MAdCAM-1, VCAM-1 and ICAM-1 monoclonal antibodies led to more rapid remission in the experimental autoimmune encephalitis (EAE) model of MS than that obtained with individual antibodies alone [39]. Similarly, Steiner et al., found that ICAM-1 and VCAM-1 have redundant roles in mediating shear resistant arrest of encephalitogenic T cells to the BBB endothelial cells and only in the functional absence of both was the complete abrogation of T cell arrest on the BBB observed [40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.
    PLoS ONE 07/2014; 9(7):e102598. DOI:10.1371/journal.pone.0102598 · 3.23 Impact Factor
  • Source
    • "Both DC-SIGNR and DC-SIGN lectins are expressed on sinusoidal endothelial cells and recognize the Lewis sugars (Lai et al., 2006). ICAM-2 is normally glycosylated with Lewis(Y), and is involved in T-cell recruitment across activated brain endothelial cells (Steiner et al., 2010). Lewis(Y) binds to DC-SIGN, and it has been suggested that the interaction between ICAM-2 and DC-SIGN is an early event in dendritic cell recruitment to the CNS (Arjmandi et al., 2009). "

  • Source
    • "For in vitro chemokine transcytosis, pMBMECs were isolated from brains of DARC-deficient and wild-type SJL mice at 6–8 weeks of age, as described (Steiner et al., 2010). pMBMECs plated on Matrigel (BD Biosciences) coated 0.4 mm pore size transwell filters (Corning; Vitaris AG) and cultured for 6 days to reach confluency. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Duffy antigen/receptor for chemokines, DARC, belongs to the family of atypical heptahelical chemokine receptors that do not couple to G proteins and therefore fail to transmit conventional intracellular signals. Here we show that during experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, the expression of DARC is upregulated at the blood-brain barrier. These findings are corroborated by the presence of a significantly increased number of subcortical white matter microvessels staining positive for DARC in human multiple sclerosis brains as compared to control tissue. Using an in vitro blood-brain barrier model we demonstrated that endothelial DARC mediates the abluminal to luminal transport of inflammatory chemokines across the blood-brain barrier. An involvement of DARC in experimental autoimmune encephalomyelitis pathogenesis was confirmed by the observed ameliorated experimental autoimmune encephalomyelitis in Darc(-/-) C57BL/6 and SJL mice, as compared to wild-type control littermates. Experimental autoimmune encephalomyelitis studies in bone marrow chimeric Darc(-/-) and wild-type mice revealed that increased plasma levels of inflammatory chemokines in experimental autoimmune encephalomyelitis depended on the presence of erythrocyte DARC. However, fully developed experimental autoimmune encephalomyelitis required the expression of endothelial DARC. Taken together, our data show a role for erythrocyte DARC as a chemokine reservoir and that endothelial DARC contributes to the pathogenesis of experimental autoimmune encephalomyelitis by shuttling chemokines across the blood-brain barrier.
    Brain 03/2014; 137(5). DOI:10.1093/brain/awu045 · 9.20 Impact Factor
Show more