ChemInform Abstract: Molecular Studies of Model Surfaces of Metals from Single Crystals to Nanoparticles under Catalytic Reaction Conditions. Evolution from Prenatal and Postmortem Studies of Catalysts

Department of Chemistry, University of California, Berkeley, California 94720, USA.
Langmuir (Impact Factor: 4.46). 11/2010; 26(21):16190-203. DOI: 10.1021/la101884s
Source: PubMed


Molecular level studies of metal crystal and nanoparticle surfaces under catalytic reaction conditions at ambient pressures during turnover were made possible by the use of instruments developed at the University of California at Berkeley. Sum frequency generation vibrational spectroscopy (SFGVS), owing to its surface specificity and sensitivity, is able to identify the vibrational features of adsorbed monolayers of molecules. We identified reaction intermediates, different from reactants and products, under reaction conditions and for multipath reactions on metal single crystals and nanoparticles of varying size and shape. The high-pressure scanning tunneling microscope (HP-STM) revealed the dynamics of a catalytically active metallic surface by detecting the mobility of the adsorbed species during catalytic turnover. It also demonstrated the reversible and adsorbate-driven surface restructuring of platinum when exposed to molecules such as CO and ethylene. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) detected the reversible changes of surface composition in rhodium-palladium, platinum-palladium, and other bimetallic nanoparticles as the reactant atmosphere changed from oxidizing to reducing. It was found that metal nanoparticles of less than 2 nm in size are present in higher oxidation states, which alters and enhances their catalytic activity. The catalytic nanodiode (CND) confirmed that a catalytic reaction-induced current flow exists at oxide-metal interfaces, which correlates well with the reaction turnover.

3 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rock-salt NiO and Ni0.7Zn0.3O nanoparticles were investigated by x-ray diffraction, atomic-force microscopy, and magnetic measurements. Nanoparticle diameters varied from 8 to 30 nm depending on reaction conditions. There are two main magnetization contributions, the field-induced spin canting of the antiferromagnetic sublattices and the magnetization rotation caused by uncompensated spins interacting with the magnetic field. The former is a bulk effect, modified by the presence of Zn, whereas the latter is a nanoscale effect that increases with decreasing particle size. The relative contributions of the two effects depend on particle size with a critical size of about 18 nm resulting in bulklike behavior.
    Journal of Applied Physics 03/2011; 109(7). DOI:10.1063/1.3556953 · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new instrument for synchronous in situ investigations of catalytic materials by IR and X-ray absorption spectroscopies was designed and built at the X18A beamline of the National Synchrotron Light Source of Brookhaven National Laboratory. It provides analytical tools for solving structural, electronic and kinetic problems in catalysis science by two complementary methods. Among the features attractive for catalysis research are the broad range of catalytically active elements that can be investigated (starting with Ni and beyond), the wide range of reaction conditions (temperatures up to 873 K, various reactive gases) and time scales (starting from tens of seconds). The results of several representative experiments that illustrate the attractive capabilities of the new set-up are discussed.
    Journal of Synchrotron Radiation 05/2011; 18(Pt 3):447-55. DOI:10.1107/S0909049511005802 · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this article we describe the synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles (DENs). These materials are synthesized using a template approach in which metal ions are extracted into the interior of dendrimers and then subsequently reduced chemically to yield nearly size-monodisperse particles having diameters in the 1–2 nm range. Monometallic, bimetallic (alloy and core@shell), and semiconductor nanoparticles have been prepared by this route. The dendrimer component of these composites serves not only as a template for preparing the nanoparticle replica, but also as a stabilizer for the nanoparticle. In this perspective, we report on progress in the synthesis, characterization, and applications of these materials since our last review in 2005. Significant advances in the synthesis of core@shell DENs, characterization, and applications to homogeneous and heterogeneous catalysis (including electrocatalysis) are emphasized.
    Chemical Science 08/2011; 2(9). DOI:10.1039/C1SC00256B · 9.21 Impact Factor
Show more