G protein coupled receptors as allosteric proteins and the role of allosteric modulators.

GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
Journal of Receptor and Signal Transduction Research (Impact Factor: 1.61). 10/2010; 30(5):313-21. DOI: 10.3109/10799893.2010.503964
Source: PubMed

ABSTRACT Seven transmembrane receptors (7TMRs) are proteins that convey signals through changes in conformation. These conformations are stabilized by external molecules (i.e. agonists, antagonists, modulators) and act upon other bodies (termed 'guests') which can be other molecules in the extracellular space, or proteins along the plane of the membrane (receptor oligomerization) or signaling proteins in the cytosol (i.e. G protein, β-arrestin). These elements comprise allosteric systems and a great deal of 7TMR pharmacology can be considered in terms of allosteric behavior. Allosteric ligands acting on 7TMRs possess four unique behaviors that can be valuable therapeutically; (1) the ability to alter the interaction of very large proteins, (2) probe dependence, (3) saturable effect, and (4) induction of separate changes in affinity and efficacy of other ligands. Two of these behaviors (namely probe dependence for CCR5-based HIV-1 entry inhibitors and functional selectivity for biased agonism) will be highlighted with examples.