Article

Demyelination versus remyelination in progressive multiple sclerosis.

Laboratory of Neuropathology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark.
Brain (Impact Factor: 10.23). 10/2010; 133(10):2983-98. DOI: 10.1093/brain/awq250
Source: PubMed

ABSTRACT The causes of incomplete remyelination in progressive multiple sclerosis are unknown, as are the pathological correlates of the different clinical characteristics of patients with primary and secondary progressive disease. We analysed brains and spinal cords from 51 patients with progressive multiple sclerosis by planimetry. Thirteen patients with primary progressive disease were compared with 34 with secondary progressive disease. In patients with secondary progressive multiple sclerosis, we found larger brain plaques, more demyelination in total and higher brain loads of active demyelination compared with patients with primary progressive disease. In addition, the brain density of plaques with high-grade inflammation and active demyelination was highest in secondary progressive multiple sclerosis and remained ~18% higher than in primary progressive multiple sclerosis after adjustments for other plaque types and plaque number (P<0.05). Conversely, the proportion of remyelinated shadow plaques (P<0.05) and the overall remyelination capacity (P<0.01) per brain were higher in primary, compared with secondary, progressive multiple sclerosis. By contrast, there were no group differences in the brain load or frequency of low-grade inflammatory plaques with slowly expanding demyelination. Spinal cord lesion loads and remyelination capacity were also comparable in the two patient groups. Remyelinated areas were more vulnerable than the normal-appearing white matter to new demyelination, including active demyelination in secondary progressive multiple sclerosis. 'Recurrent' slowly expanding demyelination, affecting remyelinated areas, and the load of slowly expanding demyelination correlated with incomplete remyelination in both groups. In turn, incomplete remyelination in the spinal cord correlated with higher disease-related disability (determined retrospectively; r = -0.53; P<0.05 for remyelination capacity versus disease severity). By contrast, such a correlation was not observed in the brain. We propose that regulatory and reparative properties could protect the white matter of the brain in patients with primary progressive multiple sclerosis. These patients may, thereby, be spared symptoms until the spinal cord is affected. By contrast, recurrent active demyelination of repaired myelin could explain why similar symptoms often develop in consecutive relapses in relapsing-remitting/secondary progressive multiple sclerosis. Our data also indicate that slowly expanding demyelination may irreparably destroy normal and repaired myelin, supporting the concept of slowly expanding demyelination as an important pathological correlate of clinical progression.

2 Bookmarks
 · 
139 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis is a chronic demyelinating disease of the central nervous system leading to progressive cognitive and motor dysfunction, which is characterized by neuroinflammation, demyelination, astrogliosis, loss of oligodendrocytes, and axonal pathologies. Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. In this study, we investigated the effects of cPA on cuprizone-induced demyelination, which is a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, astrocyte and microglial activation, and motor dysfunction. Simultaneous administration of cPA effectively attenuated cuprizone-induced demyelination, glial activation, and motor dysfunction. These data indicate that cPA may be a useful treatment to reduce the extent of demyelination and the severity of motor dysfunction in multiple sclerosis. cPA is a potential lead compound in the development of drugs for the treatment of this devastating disease.
    European Journal of Pharmacology 07/2014; · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autoimmune diseases, such as multiple sclerosis (MS), show a higher incidence rate in women compared to men, which may be due to differences in the immune system, sex hormones, or both. Furthermore a disruption in homeostasis within these systems appears to be contributing to the etiology of MS. These systems are also influenced by the environment and metabolic factors necessitating the adoption of a broader viewpoint of the contributing factors in MS in the search for effective therapeutics.
    Immunology Letters 09/2014; · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between environmental factors and a susceptible genetic background. Experimental autoimmune encephalomyelitis (EAE) has been widely used to investigate the mechanisms underlying MS pathogenesis. Chemokines, such as CCL2, are involved in the development of EAE. We have previously shown that thiamine deficiency (TD) induced CCL2 in neurons. We hypothesized that TD may affect the pathogenesis of EAE. In this study, EAE was induced in C57BL/6J mice by the injection of myelin oligodendroglial glycoprotein (MOG) peptides 35-55 with or without TD. TD aggravated the development of EAE, which was indicated by clinical scores and pathologic alterations in the spinal cord. TD also accelerated the development of EAE in an adoptive transfer EAE model. TD caused microglial activation and a drastic increase (up 140%) in leukocyte infiltration in the spinal cord of the EAE mice; specifically, TD increased Th1 and Th17 cells. TD upregulated the expression of CCL2 and its receptor CCR2 in the spinal cord of EAE mice. Cells in peripheral lymph node and spleen isolated from MOG-primed TD mice showed much stronger proliferative responses to MOG. CCL2 stimulated the proliferation and migration of T lymphocytes in vitro. Our results suggested that TD exacerbated the development of EAE through activating CCL2 and inducing pathologic inflammation.
    The Journal of Immunology 07/2014; 193(5):2157. · 5.36 Impact Factor

Full-text (2 Sources)

Download
47 Downloads
Available from
May 23, 2014