Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles.

Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
Antiviral research (Impact Factor: 3.61). 11/2010; 88(2):244-7. DOI: 10.1016/j.antiviral.2010.09.001
Source: PubMed

ABSTRACT To develop a more effective vaccination method against H5N1 virus, we investigated the immunogenicity and protective efficacy after skin vaccination using microneedles coated with influenza virus-like particles containing hemagglutinin derived from A/Vietnam/1203/04 H5N1 virus (H5 VLPs). A single microneedle vaccination of mice with H5 VLPs induced increased levels of antibodies and provided complete protection against lethal challenge without apparent disease symptoms. In contrast, intramuscular injection with the same vaccine dose showed low levels of antibodies and provided only partial protection accompanied by severe body weight loss. Post-challenge analysis suggested that improved protection was associated with lower lung viral titers and enhanced generation of recall antibody secreting cells by microneedle vaccination. Thus, this study provides evidence that skin delivery of H5 VLP vaccines using microneedles designed for self-administration induces improved protection compared to conventional intramuscular immunization.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Most vaccines are administered by intramuscular injection using a hypodermic needle and syringe. Some limitations of this procedure include reluctance to be immunized because of fear of needlesticks, and concerns associated with the safe disposal of needles after their use. Skin delivery is an alternate route of vaccination that has potential to be painless and could even lead to dose reduction of vaccines. Recently, microneedles have emerged as a novel painless approach for delivery of influenza vaccines via the skin. Areas covered: In this review, we briefly summarize the approaches and devices used for skin vaccination, and then focus on studies of skin immunization with influenza vaccines using microneedles. We discuss both the functional immune response and the nature of this immune response following vaccination with microneedles. Expert opinion: The cutaneous administration of influenza vaccines using microneedles offers several advantages: it is painless, elicits stronger immune responses in preclinical studies and could improve responses in high-risk populations. These dry formulations of vaccines provide enhanced stability, a property of high importance in enabling their rapid global distribution in response to possible outbreaks of pandemic influenza and newly emerging infectious diseases.
    Expert Opinion on Drug Delivery 02/2014; DOI:10.1517/17425247.2014.885947 · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current influenza vaccines do not provide good protection against antigenically different influenza A viruses. As an approach to overcome strain-specificity of protection, this study demonstrates significantly improved long-term cross protection by supplementing split vaccines with a conserved molecular target, a repeat of the influenza M2 ectodomain (M2e) expressed on virus-like particles (M2e5x VLPs) in a membrane-anchored form. Intramuscular immunization with H1N1 split vaccine (A/California/07/2009) supplemented with M2e5x VLPs induced M2e specific humoral and cellular immune responses, and shaped the host responses to the vaccine in the direction of T helper type 1 responses inducing dominant IgG2a isotype antibodies as well as IFN-? producing cells in systemic and mucosal sites. Upon lethal challenge, M2e5x VLP-supplemented vaccination lowered lung viral loads and induced long-term cross protection against H3N2 or H5N1 subtype influenza viruses over 12 months. M2e antibodies, CD4 T cells, and CD8 T-cells were found to contribute to improving heterosubtypic cross protection. In addition, improved cross protection by supplemented vaccination with M2e5x VLPs was mediated via Fc receptors. The results support evidence that supplementation with M2e5x VLPs is a promising approach for overcoming the limitation of strain-specific protection by current influenza vaccination.Molecular Therapy (2014); doi:10.1038/mt.2014.33.
    Molecular Therapy 03/2014; 22(7). DOI:10.1038/mt.2014.33 · 6.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine.
    Vaccine 08/2014; 32(44). DOI:10.1016/j.vaccine.2014.08.045 · 3.49 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014