Article

Up-regulation of GABA transporters and GABA(A) receptor α1 subunit in tremor rat hippocampus.

Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China.
Neuroscience Letters (Impact Factor: 2.06). 12/2010; 486(3):150-5. DOI: 10.1016/j.neulet.2010.09.033
Source: PubMed

ABSTRACT The loss of GABAergic neurotransmission has been closely linked with epileptogenesis. The modulation of the synaptic activity occurs both via the removal of GABA from the synaptic cleft and by GABA transporters (GATs) and by modulation of GABA receptors. The tremor rat (TRM; tm/tm) is the parent strain of the spontaneously epileptic rat (SER; zi/zi, tm/tm), which exhibits absence-like seizure after 8 weeks of age. However, there are no reports that can elucidate the effects of GATs and GABA(A) receptors (GABARs) on TRMs. The present study was conducted to detect GATs and GABAR α1 subunit in TRMs hippocampus at mRNA and protein levels. In this study, total synaptosomal GABA content was significantly decreased in TRMs hippocampus compared with control Wistar rats by high performance liquid chromatography (HPLC); mRNA and protein expressions of GAT-1, GAT-3 and GABAR α1 subunit were all significantly increased in TRMs hippocampus by real time PCR and Western blot, respectively; GAT-1 and GABAR α1 subunit proteins were localized widely in TRMs and control rats hippocampus including CA1, CA3 and dentate gyrus (DG) regions whereas only a wide distribution of GAT-3 was observed in CA1 region by immunohistochemistry. These data demonstrate that excessive expressions of GAT-1 as well as GAT-3 and GABAR α1 subunit in TRMs hippocampus may provide the potential therapeutic targets for genetic epilepsy.

0 Followers
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Impaired GABAergic inhibitory neurotransmission plays an essential role in the pathogenesis of epilepsy. GABA(A) receptor (GABA(A)R), potassium chloride cotransporter 2 (KCC2) and astrocytes are of particular importance to GABAergic transmission and thus involved in the development of increased seizure susceptibility. The tremor rat (TRM: tm/tm), a genetic mutant discovered in a Kyoto-Wistar colony, can manifest both absence-like seizures and tonic convulsions without any external stimuli. So far, there are no reports that can elucidate the effects of GABA(A)R (α4, γ2 subunit), KCC2 and astrocytes on TRMs. The present study was undertaken to detect the expressions of GABA(A)R α4, GABA(A)R γ2 and KCC2 in TRMs hippocampus at mRNA and protein levels. In this work, mRNA and protein expressions of GABA(A)R α4 were significantly elevated while GABA(A)R γ2 and KCC2 were both evidently decreased in TRMs hippocampus by real-time RT-PCR and western blot, respectively. Furthermore, a dramatic elevation of KCC2 protein level was found after cerebroventricular injection with K252a to TRMs than that in the DMSO-treated TRMs. Besides, our present study also demonstrated that GFAP (a major component of astrocyte) immunoreactivity was much more intense in TRMs hippocampal CA1, CA3 and DG regions than that in control group with immnohistochemistry and confocal microscopic analyses. The protein expression of GFAP was also markedly elevated in TRMs hippocampus, suggesting that astrogliosis appeared in the TRM model. These data demonstrate that altered expressions of GABA(A)R (α4, γ2) and KCC2 and astrogliosis observed in TRMs hippocampus may provide us good therapeutic targets for the treatment of genetic epilepsy.
    Brain research bulletin 09/2011; 86(5-6):373-9. DOI:10.1016/j.brainresbull.2011.09.002 · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gabra5 gene is associated with pharmacological properties (myorelaxant, amnesic, anxiolytic) of benzodiazepines. It is tightly located (0.5 cM) close to the pink-eyed dilution (p) locus which encodes for fur color on mouse chromosome 7. We tested the putative role of the gabra5 gene in pharmacological properties of the full non specific agonist chlordiazepoxide (CDP), using behavioral and molecular approaches in mutated p/p mice and wild type F2 from crosses between two multiple markers inbred strain ABP/Le and C57BL/6By strain. From our results, using rotarod, light-dark box, elevated maze and radial arm maze tests, we demonstrate that p/p mice are more sensitive than WT to the sensory motor, anxiolytic and amnesic effect of CDP. This is associated with the presence of a haplotypic block on the murine chromosome 7 and with an up regulation of gabra5 mRNAs in hippocampi of p/p F2 mice.
    Behavioural brain research 06/2012; 233(2):474-82. DOI:10.1016/j.bbr.2012.05.041 · 3.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seizures were induced by flurothyl inhalation. Rats were intramuscularly treated with progesterone after each seizure. Results demonstrated that glutamate transporter 2 and γ-aminobutyric acid transporter 1 expression levels were significantly increased in the cerebral cortex and hippocampus of the developing rat brain following recurrent seizures. After progesterone treatment, glutamate transporter 2 protein expression was upregulated, but γ-aminobutyric acid transporter 1 levels decreased. These results suggest that glutamate transporter 2 and γ-aminobutyric acid transporter 1 are involved in the pathological processes of epilepsy. Progesterone can help maintain a balance between excitatory and inhibitory systems by modulating the amino acid transporter system, and protect the developing brain after recurrent seizures.
    Neural Regeneration Research 09/2012; 7(26):2036-42. DOI:10.3969/j.issn.1673-5374.2012.26.005 · 0.23 Impact Factor
Show more