A Mutation in SLC24A1 Implicated in Autosomal-Recessive Congenital Stationary Night Blindness

National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan.
The American Journal of Human Genetics (Impact Factor: 10.99). 10/2010; 87(4):523-31. DOI: 10.1016/j.ajhg.2010.08.013
Source: PubMed

ABSTRACT Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder that can be associated with impaired night vision. The last decade has witnessed huge progress in ophthalmic genetics, including the identification of three genes implicated in the pathogenicity of autosomal-recessive CSNB. However, not all patients studied could be associated with mutations in these genes and thus other genes certainly underlie this disorder. Here, we report a large multigeneration family with five affected individuals manifesting symptoms of night blindness. A genome-wide scan localized the disease interval to chromosome 15q, and recombination events in affected individuals refined the critical interval to a 10.41 cM (6.53 Mb) region that harbors SLC24A1, a member of the solute carrier protein superfamily. Sequencing of all the coding exons identified a 2 bp deletion in exon 2: c.1613_1614del, which is predicted to result in a frame shift that leads to premature termination of SLC24A1 (p.F538CfsX23) and segregates with the disorder under an autosomal-recessive model. Expression analysis using mouse ocular tissues shows that Slc24a1 is expressed in the retina around postnatal day 7. In situ and immunohistological studies localized both SLC24A1 and Slc24a1 to the inner segment, outer and inner nuclear layers, and ganglion cells of the retina, respectively. Our data expand the genetic basis of CSNB and highlight the indispensible function of SLC24A1 in retinal function and/or maintenance in humans.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regressive evolution involves the degeneration of formerly useful structures in a lineage over time, and may be accompanied by the molecular decay of phenotype-specific genes. The mammalian eye has repeatedly undergone degeneration in taxa that occupy dim-light environments including subterranean habitats. Here we assess whether a decrease in the amount of light that reaches the retina is associated with increased regression of retinal genes, whether the phototransduction and visual cycle pathways degrade in a predictable pattern, and if the timing of retinal gene loss is associated with the entrance of mammalian lineages into subterranean environments. Sequence data were obtained from the publically available genomes of the Cape golden mole (Chrysochloris asiatica), naked mole-rat (Heterocephalus glaber) and star-nosed mole (Condylura cristata) for 65 genes associated with phototransduction, the visual cycle, and other retinal functions. Gene sequences were inspected for inactivating mutations and, when present, pseudogene sequences were compared to sequences from subaerial outgroup species. To test whether retinal degeneration is correlated with historical entrances into subterranean environments, estimated dates of retinal gene inactivation were compared to the fossil record and phylogenetic inferences of ancestral fossoriality. Our results show that 1) lower levels of light available to the retina correspond with an increase in the number of retinal pseudogenes, 2) retinal protein networks generally degrade in a predictable manner, although the extensive loss of cone phototransduction genes in Heterocephalus raises further questions regarding SWS1-cone monochromacy versus functional rod monochromacy in this species, and 3) inactivation dates of retinal genes usually post-date inferred entrances into subterranean habitats.
    Molecular Phylogenetics and Evolution 05/2014; 78. DOI:10.1016/j.ympev.2014.05.016 · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital stationary night blindness (CSNB) is a non-progressive retinal disorder that shows genetic and clinical heterogeneity. CSNB is inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait and shows a good genotype-phenotype correlation. Clinically, CSNB is classified as the Riggs type and the Schubert-Bornschein type. The latter form is further sub-classified into complete and incomplete forms based on specific waveforms on the electroretinogram (ERG). There are no molecular genetic data for CSNB in the Indian population. Therefore, we present for the first time molecular profiling of eight families with complete CSNB (cCSNB). The index patients and their other affected family members were comprehensively evaluated for the phenotype, including complete ophthalmic evaluation, ERG, fundus autofluorescence, optical coherence tomography, and color vision test. The known gene defects for cCSNB, LRIT3, TRPM1, GRM6, GPR179, and NYX, were screened by PCR direct sequencing. Bioinformatic analyses were performed using SIFT and PolyPhen for the identified missense mutations. All eight affected index patients and affected family members were identified as having cCSNB based on their ERG waveforms. Mutations in the TRPM1 gene were identified in six index patients. The two remaining index patients each carried a GPR179 and GRM6 mutation. Seven of the patients revealed homozygous mutations, while one patient showed a compound heterozygous mutation. Six of the eight mutations identified are novel. This is the first report on molecular profiling of candidate genes in CSNB in an Indian cohort. As shown for other cohorts, TRPM1 seems to be a major gene defect in patients with cCSNB in India.
    Molecular vision 03/2014; 20:341-51. · 2.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report ophthalmic and genetic findings in families with autosomal recessive rod-cone dystrophy (arRCD) and RP1 mutations. Detailed ophthalmic examination was performed in 242 sporadic and arRCD subjects. Genomic DNA was investigated using our customized next generation sequencing panel targeting up to 123 genes implicated in inherited retinal disorders. Stringent filtering coupled with Sanger sequencing and followed by cosegregation analysis was performed to confirm biallelism and the implication of the most likely disease causing variants. Sequencing identified 9 RP1 mutations in 7 index cases. Eight of the mutations were novel, and all cosegregated with severe arRCD phenotype, found associated with additional macular changes. Among the identified mutations, 4 belong to a region, previously associated with arRCD, and 5 others in a region previously associated with adRCD. Our prevalence studies showed that RP1 mutations account for up to 2.5% of arRCD. These results point out for the necessity of sequencing RP1 when genetically investigating sporadic and arRCD. It further highlights the interest of unbiased sequencing technique, which allows investigating the implication of the same gene in different modes of inheritance. Finally, it reports that different regions of RP1 can also lead to arRCD.
    BioMed Research International 01/2015; 2015:485624. DOI:10.1155/2015/485624 · 2.71 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014