Rapid modulation of sensory processing induced by stimulus conflict.

Duke University, Durham, NC 27708, USA.
Journal of Cognitive Neuroscience (Impact Factor: 4.69). 09/2011; 23(9):2620-8. DOI: 10.1162/jocn.2010.21575
Source: DBLP

ABSTRACT Humans are constantly confronted with environmental stimuli that conflict with task goals and can interfere with successful behavior. Prevailing theories propose the existence of cognitive control mechanisms that can suppress the processing of conflicting input and enhance that of the relevant input. However, the temporal cascade of brain processes invoked in response to conflicting stimuli remains poorly understood. By examining evoked electrical brain responses in a novel, hemifield-specific, visual-flanker task, we demonstrate that task-irrelevant conflicting stimulus input is quickly detected in higher level executive regions while simultaneously inducing rapid, recurrent modulation of sensory processing in the visual cortex. Importantly, however, both of these effects are larger for individuals with greater incongruency-related RT slowing. The combination of neural activation patterns and behavioral interference effects suggest that this initial sensory modulation induced by conflicting stimulus inputs reflects performance-degrading attentional distraction because of their incompatibility rather than any rapid task-enhancing cognitive control mechanisms. The present findings thus provide neural evidence for a model in which attentional distraction is the key initial trigger for the temporal cascade of processes by which the human brain responds to conflicting stimulus input in the environment.


Available from: Lawrence Gregory Appelbaum, May 08, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Executive-attention theory proposes a close relationship between working memory capacity (WMC) and cognitive control abilities. However, conflicting results are documented in the literature, with some studies reporting that individual variations in WMC predict differences in cognitive control and trial-to-trial control adjustments (operationalized as the size of the congruency effect and congruency sequence effects, respectively), while others report no WMC-related differences. We hypothesized that brain network dynamics might be a more sensitive measure of WMC-related differences in cognitive control abilities. Thus, in the present study, we measured human EEG during the Simon task to characterize WMC-related differences in the neural dynamics of conflict processing and adaptation to conflict. Although high- and low-WMC individuals did not differ behaviorally, there were substantial WMC-related differences in theta (4–8 Hz) and delta (1–3 Hz) connectivity in fronto-parietal networks. Group differences in local theta and delta power were relatively less pronounced. These results suggest that the relationship between WMC and cognitive control abilities is more strongly reflected in large-scale oscillatory network dynamics than in spatially localized activity or in behavioral task performance.
    Frontiers in Human Neuroscience 09/2014; 8(761). DOI:10.3389/fnhum.2014.00761
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.
    International journal of psychophysiology: official journal of the International Organization of Psychophysiology 10/2014; DOI:10.1016/j.ijpsycho.2014.09.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: For simultaneous localization and mapping (SLAM) based on the extended Kalman filter, the size of the state vector is an essential factor because the feasibility depends on it. In this paper, a new SLAM based on ceiling vision (cv-SLAM) is proposed. To keep the size of the state vector compact, the boundaries between ceiling and walls are used as landmarks for visual SLAM (vSLAM). The ceiling boundaries are robust to illuminative variations and they are not as numerous as the point features. Some constraints are imposed on the features based on the characteristics of the ceiling boundaries and an efficient update method called 'double update' is proposed to improve the SLAM performance. The basic idea of the double update is to fully utilize the intersections of the boundary features. Finally, the proposed SLAM is applied to some simulations and experiment, and its effectiveness is demonstrated through them.
    Advanced Robotics 04/2012; 26(5):653-671. DOI:10.1163/156855311X617542