Article

Dual inhibition of epidermal growth factor receptor and insulin‐like growth factor receptor I: Reduction of angiogenesis and tumor growth in cutaneous squamous cell carcinoma

Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
Head & Neck (Impact Factor: 3.01). 02/2011; 33(2):189-98. DOI: 10.1002/hed.21419
Source: PubMed

ABSTRACT Cutaneous squamous cell carcinoma (CSCC) is the second most common nonmelanoma skin cancer. Most of the approximately 250,000 cases occurring annually in the United States are small, nonaggressive, and cured by excision alone. However, a subset of these tumors which are defined by poorly differentiated histology, large tumor size, invasion of adjacent structures, and/or regional metastases can prove resistant to treatment despite adjuvant radiotherapy and can have an increased risk of recurrence and nodal metastasis. Novel therapeutic approaches are necessary to improve the outcomes for patients with aggressive CSCC.
We analyzed the effect of targeted therapy on the growth and survival of CSCC cell lines using an anti-insulin-like growth factor-I receptor (IGF-IR) antibody, A12, alone or in combination with an anti-epidermal growth factor receptor (EGFR) antibody, cetuximab, both in vitro and in vivo in an athymic nude mouse model of CSCC.
Treatment with A12 and cetuximab inhibited the signaling pathways of IGF-IR and EGFR and inhibited proliferation and induced apoptosis of squamous cell carcinoma (SCC) cell lines in vitro. Immunohistochemical staining revealed decreased proliferating cell nuclear antigen (PCNA), microvessel density, and increased apoptosis within the treated tumor xenografts. In addition, the administration of A12, alone or in combination with cetuximab inhibited the growth of tumors by 51% and 92%, respectively, and significantly enhanced survival in the nude mouse model of CSCC (p = .044 and p < .001, respectively).
These data suggest that dual treatment with monoclonal antibodies to the EGFR and IGF-IR may be therapeutically useful in the treatment of CSCC.

Download full-text

Full-text

Available from: Dale Ludwig, May 06, 2014
0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cutaneous squamous cell carcinoma of the head and neck is an epidemic that reaches all parts of the world. Making the diagnosis relies on the acumen of the clinician and pathologist. Various pathologic subtypes exist and differ in histology and prognosis. High-risk tumors need aggressive treatment and vigilant surveillance to monitor for recurrence. Large tumors, deep tissue invasion, perineural involvement, recurrence, location in high-risk areas, and immunosuppression are implicated in worsening prognosis. Surgery is the mainstay of treatment with adjuvant radiation therapy as needed for aggressive tumors; however, other modalities are potentially useful for low-risk lesions. The use of Mohs surgery has become increasingly useful and has shown high success rates. Involvement of parotid and neck lymph nodes significantly affects outcomes and the physician should be comfortable with management of this complex disease. This paper examines the diagnosis, pathology, clinical course, and treatment options for cutaneous squamous cell carcinoma of the head and neck.
    02/2011; 2011:502723. DOI:10.1155/2011/502723
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of monoclonal antibodies (mAbs) has become a general approach for specifically targeting and treating human disease. In oncology, the therapeutic utility of mAbs is usually evaluated in the context of treatment with standard of care, as well as other small molecule targeted therapies. Many anti-cancer antibody modalities have achieved validation, including the targeting of growth factor and angiogenesis pathways, the induction of tumor cell killing or apoptosis, and the blocking of immune inhibitory mechanisms to stimulate anti-tumor responses. But, as with other targeted therapies, few antibodies are curative because of biological complexities that underlie tumor formation and redundancies in molecular pathways that enable tumors to adapt and show resistance to treatment. This review discusses the combinations of antibody therapeutics that are emerging to improve efficacy and durability within a specific biological mechanism (e.g., immunomodulation or the inhibition of angiogenesis) and across multiple biological pathways (e.g., inhibition of tumor growth and induction of tumor cell apoptosis).
    mAbs 07/2011; 3(4):338-51. DOI:10.4161/mabs.3.4.16615 · 4.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In some inflammasomes tumor cells are generated. The internal environment of the inflammasome is conducive to the induction of malignant transformation. Epigenetic changes initiate this process. The subverted stromal connective tissue cells act to promote and sustain the process of malignant trans-formation. In its early stages, the premalignant cells depend on paracrine circuitries for the reception of growth factors. The ligands are derived from the connective tissue, and the receptors are expressed on the recipient premalignant cells. The initial events are not a direct attack on the proto-oncogenes, and thus it may be entirely reversible. Epigenetic processes of hypermethylation of the genes at the promoters of tumor suppressor genes (to silence them), and deacetylation of the histones aimed at the promoters of proto-oncogenes (to activate them) are on-going. A large number of short RNA sequences (interfering, micro-, short hairpin, non-coding RNAs) silence tumor suppressor genes, by neutralizing their mRNAs. In a serial sequence oncogenes undergo amplifications, point-mutations, translocations and fusions. In its earliest stage, the process is reversible by demethylation of the silenced suppressor gene promoters (to reactivate them), or re-acetylation of the histones of the oncogene promoters, thus de-activating them. The external administration of histone deacetylase inhibitors usually leads to the restoration of histone acetylation. In time, the uncorrected processes solidify into constitutive and irreversible gene mutations. Some of the pathogens inducing inflammations with consquential malignant transformation contain oncogenic gene sequences (papilloma viruses, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, hepatitis B and C viruses, Merkel cell polyoma virus, Helicobacter pylori, enterotoxigenic Bacteroides fragilis). These induced malignancies may be multifocal. Other pathogens are devoid of any known oncogenic genomic sequences (mycoplasma vav-carcinogenesis, chlamydia MALT-lymphoma genesis). In these cases the host's inflammatory reactions induce the malignant transformation in serial sequences of gene alterations initiated by hypoxia and reactive oxygen and nitrogen species generation. Carcinogenic intrinsic inflammatory processes endogenously initiated without a pathogen are recognized. Chronic inflammatory processes signal the RNA/DNA complex. In response, the DNA may revert into its ancient primordial 'immortal' format, which the clinics recognize as 'oncogenesis'. The DNA remains the ultimate master of bioengineering in order to sustain life. A discussion on the most versatile and resistant primordial RNA/DNA complex and the pre-, proto-, and unicellular world in which they co-existed is included.
    International Journal of Oncology 11/2011; 40(2):305-49. DOI:10.3892/ijo.2011.1248 · 3.03 Impact Factor
Show more