Article

A Candidate Subspecies Discrimination System Involving a Vomeronasal Receptor Gene with Different Alleles Fixed in M. m. domesticus and M. m. musculus

Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.
PLoS ONE (Impact Factor: 3.53). 09/2010; 5(9). DOI: 10.1371/journal.pone.0012638
Source: PubMed

ABSTRACT Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown) that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus) meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s), also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO), by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24) are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD) between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP) capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(sub)specific polymorphism but no inter(sub)specific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive selection, but was derived from an introgressed allele, possibly from Mus spretus.

Download full-text

Full-text

Available from: Robert Karn, Jul 02, 2015
0 Followers
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The salivary androgen-binding proteins (ABPs) are members of the secretoglobin gene family present in mammals. Each ABP is a heterodimer assembled as an ABPA subunit encoded by an Abpa gene and linked by disulfide bridges to an ABPBG subunit encoded by an Abpbg gene. The ABP dimers are secreted into the saliva of mice and then transferred to the pelage after grooming and subsequently to the environment allowing an animal to mark territory with a biochemical signal. The putative role of the mouse salivary ABPs is that of pheromones mediating mate selection resulting in assortative mating in the Mus musculus species complex. We focused on comparing patterns of molecular evolution between the Abpa genes expressed in the submaxillary glands of species of New World and Old World muroids. We found that in both sets of rodents the Abpa genes expressed in the submaxillary glands appear to be evolving under a similar evolutionary regime, with relatively high nonsynonymous substitution rates, suggesting that ABP might play a similar biological role in both systems. Thus, ABP could be involved with mate recognition and species isolation in New World as well as Old World muroids.
    Journal of Molecular Evolution 05/2013; DOI:10.1007/s00239-013-9561-4 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vomeronasal sensitivity is important for detecting intraspecific pheromonal cues as well as environmental odorants and is involved in mating, social interaction, and other daily activities of many vertebrates. Two large families of seven-transmembrane G-protein-coupled receptors, V1rs and V2rs, bind to various ligands to initiate vomeronasal signal transduction. Although the macroevolution of V1r and V2r genes has been well characterized throughout vertebrates, especially mammals, little is known about their microevolutionary patterns, which hampers a clear understanding of the evolutionary forces behind the rapid evolutionary turnover of V1r and V2r genes and the great diversity in receptor repertoire across species. Furthermore, the role of divergent vomeronasal perception in enhancing premating isolation and maintaining species identity has not been evaluated. Here we sequenced 44 V1r genes and 25 presumably neutral noncoding regions in 14 wild-caught mice belonging to Mus musculus and M. domesticus, two closely related species with strong yet incomplete reproductive isolation. We found that nucleotide changes in V1rs are generally under weak purifying selection and that only ∼5% of V1rs may have been subject to positive selection that promotes nonsynonymous substitutions. Consistent with the low functional constraints on V1rs, 18 of the 44 V1rs have null alleles segregating in one or both species. Together, our results demonstrate that, despite occasional actions of positive selection, the evolution of V1rs is in a large part shaped by purifying selection and random drift. These findings have broad implications for understanding the driving forces of rapid gene turnovers that are often observed in the evolution of large gene families.
    Genome Biology and Evolution 01/2011; 3:401-12. DOI:10.1093/gbe/evr039 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two decades ago, we developed a congenic strain of Mus musculus, called b-congenic, by replacing the androgen-binding protein Abpa27(a) allele in the C3H/HeJ genome with the Abpa27(b) allele from DBA/2J. We and other researchers used this b-congenic strain and its C3H counterpart, the a-congenic strain, to test the hypothesis that, given the choice between signals from two strains with different a27 alleles on the same genetic background, test subjects would prefer the homosubspecific one. It was our purpose in undertaking this study to characterize the segment transferred from DBA to the C3H background in producing the b-congenic strain on which a role for ABPA27 in behavior has been predicated. We determined the size of the chromosome 7 segment transferred from DBA and the genes it contains that might influence preference. We found that the "functional" DBA segment is about 1% the size of the mouse haploid genome and contains at least 29 genes expressed in salivary glands, however, only three of these encode proteins identified in the mouse salivary proteome. At least two of the three genes Abpa27, Abpbg26 and Abpbg27 encoding the subunits of androgen-binding protein ABP dimers evolved under positive selection and the third one may have also. In the sense that they are subunits of the same two functional entities, the ABP dimers, we propose that their evolutionary histories might not be independent of each other.
    PLoS ONE 04/2012; 7(4):e35898. DOI:10.1371/journal.pone.0035898 · 3.53 Impact Factor