Article

The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?

Institut Pasteur, Department of Microbiology, Paris, France.
Nature Reviews Microbiology (Impact Factor: 22.49). 10/2010; 8(10):743-52. DOI: 10.1038/nrmicro2426
Source: PubMed

ABSTRACT The origin of eukaryotes and their evolutionary relationship with the Archaea is a major biological question and the subject of intense debate. In the context of the classical view of the universal tree of life, the Archaea and the Eukarya have a common ancestor, the nature of which remains undetermined. Alternative views propose instead that the Eukarya evolved directly from a bona fide archaeal lineage. Several recent large-scale phylogenomic studies using an array of approaches are divided in supporting either one or the other scenario, despite analysing largely overlapping data sets of universal genes. We examine the reasons for such a lack of consensus and consider how alternative approaches may enable progress in answering this fascinating and as-yet-unresolved question.

0 Bookmarks
 · 
143 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionary origin of eukaryotes is a question of great interest for which many different hypotheses have been proposed. These hypotheses predict distinct patterns of evolutionary relationships for individual genes of the ancestral eukaryotic genome. The availability of numerous completely sequenced genomes covering the three domains of life makes it possible to contrast these predictions with empirical data. We performed a systematic analysis of the phylogenetic relationships of ancestral eukaryotic genes with archaeal and bacterial genes. In contrast with previous studies, we emphasize the critical importance of methods accounting for statistical support, horizontal gene transfer and gene loss, and we disentangle the processes underlying the phylogenomic pattern we observe. We first recover a clear signal indicating that a fraction of the bacteria-like eukaryotic genes are of alphaproteobacterial origin. Then, we show that the majority of bacteria-related eukaryotic genes actually do not point to a relationship with a specific bacterial taxonomic group. We also provide evidence that eukaryotes branch close to the last archaeal common ancestor. Our results demonstrate that there is no phylogenetic support for hypotheses involving a fusion with a bacterium other than the ancestor of mitochondria. Overall, they leave only two possible interpretations, based respectively on the early-mitochondria hypotheses, which suppose an early endosymbiosis of an alphaproteobacterium in an archaeal host, and on the slow-drip autogenous hypothesis, in which early eukaryotic ancestors were particularly prone to horizontal gene transfers.
    Molecular Biology and Evolution 01/2014; · 10.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of the origin of diversified life has been plagued by technical and conceptual difficulties, controversy, and apriorism. It is now popularly accepted that the universal tree of life is rooted in the akaryotes and that Archaea and Eukarya are sister groups to each other. However, evolutionary studies have overwhelmingly focused on nucleic acid and protein sequences, which partially fulfill only two of the three main steps of phylogenetic analysis, formulation of realistic evolutionary models, and optimization of tree reconstruction. In the absence of character polarization, that is, the ability to identify ancestral and derived character states, any statement about the rooting of the tree of life should be considered suspect. Here we show that macromolecular structure and a new phylogenetic framework of analysis that focuses on the parts of biological systems instead of the whole provide both deep and reliable phylogenetic signal and enable us to put forth hypotheses of origin. We review over a decade of phylogenomic studies, which mine information in a genomic census of millions of encoded proteins and RNAs. We show how the use of process models of molecular accumulation that comply with Weston's generality criterion supports a consistent phylogenomic scenario in which the origin of diversified life can be traced back to the early history of Archaea.
    Archaea 06/2014; 2014. · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The origin of the eukaryotic cell, which is known as eukaryogenesis, has puzzled scientists for more than 100 years, and many hypotheses have been proposed. Recent analyses of new data enable the safe elimination of some of these hypotheses, whereas support for other hypotheses has increased. In this Opinion article, we evaluate the available theories for their compatibility with empirical observations and conclude that cellular life consists of two primary, paraphyletic prokaryotic groups and one secondary, monophyletic group that has symbiogenic origins - the eukaryotes.
    Nature Reviews Microbiology 05/2014; · 22.49 Impact Factor

Full-text (2 Sources)

View
277 Downloads
Available from
Jun 4, 2014