Article

SIRT1 is a novel regulator of key pathways of human labor.

Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.
Biology of Reproduction (Impact Factor: 4.03). 01/2011; 84(1):167-78. DOI: 10.1095/biolreprod.110.086983
Source: PubMed

ABSTRACT Human sirtuin (SIRT) 1 and SIRT2, which possess nicotinamide adenosine dinucleotide (NAD(+))-dependent deacetylase activity, exhibit anti-inflammatory actions. However, there are no data available on SIRT1 and SIRT2 expression and regulation in human intrauterine tissues. Thus, the aim of this study was to characterize the localization and expression of SIRT1 and SIRT2 in 1) placenta and fetal membranes before and after term spontaneous labor onset, 2) prelabor fetal membranes from the supracervical site (SCS) and a distal site (DS), and 3) in response to proinflammatory stimuli. Further, the effect of SIRT activation using resveratrol and SRT1720 on prolabor mediators was also assessed. SIRT1 and SIRT2 were localized in the syncytiotrophoblast layer and the cytotrophoblasts of the placenta, amnion epithelium, trophoblast layer of the chorion, and decidual cells. Additionally, SIRT2 was found within the endothelial walls of placental vessels. SIRT2, but not SIRT1, staining was significantly lower in amnion and chorion obtained from the SCS compared to a DS. On the other hand, SIRT1, but not SIRT2, gene and/or protein expression was significantly lower in placenta, amnion, and chorion obtained after labor compared to prelabor. SIRT1 expression, but not SIRT2, was down-regulated by lipopolysaccharide (LPS) and proinflammatory cytokines TNF and IL1B. The SIRT1 activators resveratrol and SRT1720 significantly decreased LPS-induced TNF, IL6, and IL8 gene expression and release and PTGS2 mRNA expression and resultant prostaglandin (PG) E(2) and PGF(2α) release from human gestational tissues. In conclusion, SIRT1 possesses anti-inflammatory actions and thus may play a role in regulating pregnancy and parturition.

0 Bookmarks
 · 
83 Views
  • Source
    Preterm Birth - Mother and Child, 01/2012: chapter 6: pages 32; InTech., ISBN: 978-953-307-828-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diet in human health is no longer simple nutrition, but in light of recent research, especially nutrigenomics, it is linked via evolution and genetics to cell health status capable of modulating apoptosis, detoxification, and appropriate gene response. Nutritional deficiency and disease especially lack of vitamins and minerals is well known, but more recently, epidemiological studies suggest a role of fruits and vegetables, as well as essential fatty acids and even red wine (French paradox), in protection against disease. In the early 1990s, various research groups started considering the use of antioxidants (e.g., melatonin, resveratrol, green tea, lipoic acid) and metabolic compounds (e.g., nicotinamide, acetyl-L-carnitine, creatine, coenzyme Q10) as possible candidates in neuroprotection. They were of course considered on par with snake oil salesman (women) at the time. The positive actions of nutritional supplements, minerals, and plant extracts in disease prevention are now mainstream and commercial health claims being made are subject to regulation in most countries. Apart from efficacy and finding, the right dosages, the safety, and especially the level of purification and lack of contamination are all issues that are important as their use becomes widespread. From the mechanistic point of view, most of the time these substances replenish the body's deficiency and restore normal function. However, they also exert actions that are not sensu stricto nutritive and could be considered pharmacological especially that, at times, higher intake than recommended (RDA) is needed to see these effects. Free radicals and neuroinflammation processes underlie many neurodegenerative conditions, even Parkinson's disease and Alzheimer's disease. Curcumin, carotenoids, acetyl-L-carnitine, coenzyme Q10, vitamin D, and polyphenols and other nutraceuticals have the potential to target multiple pathways in these conditions. In summary, augmenting neuroprotective pathways using diet and finding new natural substances that can be more efficacious, i.e., induction of health-promoting genes and reduction of the expression of disease-promoting genes, could be incorporated into neuroprotective strategies of the future.
    Molecular Neurobiology 06/2013; · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptors (PPAR) are members of the superfamily of nuclear hormone receptors involved in embryonic development and differentiation of several tissues including placenta, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. The PPARs also control a variety of target genes involved in lipid homeostasis. Similar to other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation but also by crosstalk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, several mechanisms underlying negative regulation of gene expression by PPARs have been shown. It is suggested that PPARs are key messengers responsible for the translation of nutritional stimuli into changes in gene expression pathways for placental development.
    PPAR Research 01/2013; 2013:256508. · 2.69 Impact Factor