Article

SIRT1 Is a Novel Regulator of Key Pathways of Human Labor

Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.
Biology of Reproduction (Impact Factor: 3.45). 01/2011; 84(1):167-78. DOI: 10.1095/biolreprod.110.086983
Source: PubMed

ABSTRACT Human sirtuin (SIRT) 1 and SIRT2, which possess nicotinamide adenosine dinucleotide (NAD(+))-dependent deacetylase activity, exhibit anti-inflammatory actions. However, there are no data available on SIRT1 and SIRT2 expression and regulation in human intrauterine tissues. Thus, the aim of this study was to characterize the localization and expression of SIRT1 and SIRT2 in 1) placenta and fetal membranes before and after term spontaneous labor onset, 2) prelabor fetal membranes from the supracervical site (SCS) and a distal site (DS), and 3) in response to proinflammatory stimuli. Further, the effect of SIRT activation using resveratrol and SRT1720 on prolabor mediators was also assessed. SIRT1 and SIRT2 were localized in the syncytiotrophoblast layer and the cytotrophoblasts of the placenta, amnion epithelium, trophoblast layer of the chorion, and decidual cells. Additionally, SIRT2 was found within the endothelial walls of placental vessels. SIRT2, but not SIRT1, staining was significantly lower in amnion and chorion obtained from the SCS compared to a DS. On the other hand, SIRT1, but not SIRT2, gene and/or protein expression was significantly lower in placenta, amnion, and chorion obtained after labor compared to prelabor. SIRT1 expression, but not SIRT2, was down-regulated by lipopolysaccharide (LPS) and proinflammatory cytokines TNF and IL1B. The SIRT1 activators resveratrol and SRT1720 significantly decreased LPS-induced TNF, IL6, and IL8 gene expression and release and PTGS2 mRNA expression and resultant prostaglandin (PG) E(2) and PGF(2α) release from human gestational tissues. In conclusion, SIRT1 possesses anti-inflammatory actions and thus may play a role in regulating pregnancy and parturition.

0 Followers
 · 
126 Views
  • Source
    • "Assessment of protein expression was analysed by Western blotting as previously described [22], with some minor modifications. Two μg protein was loaded into 10% Mini-PROTEAN TGX Gels (Bio-Rad Laboratories, Hercules, CA). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A prominent feature of inflammatory diseases is endothelial dysfunction. Factors associated with endothelial dysfunction include proinflammatory cytokines, adhesion molecules, and matrix degrading enzymes. At the transcriptional level, they are regulated by the histone deacetylase sirtuin (SIRT) 1 via its actions on the proinflammatory transcription factor nuclear factor-κB (NF-κB). The role of SIRT6, also a histone deacetylase, in regulating inflammation in endothelial cells is not known. The aim of this study was to determine the effect of SIRT6 knockdown on inflammatory markers in human umbilical vein endothelial cells (HUVECs) in the presence of lipopolysaccharide (LPS). LPS decreased expression of SIRT6 in HUVECs. Knockdown of SIRT6 increased the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8), COX-prostaglandin system, ECM remodelling enzymes (MMP-2, MMP-9 and PAI-1), the adhesion molecule ICAM-1, and proangiogenic growth factors VEGF and FGF-2; cell migration; cell adhesion to leukocytes. Loss of SIRT6 increased the expression of NF-κB, whereas overexpression of SIRT6 was associated with decreased NF-κB transcriptional activity. Taken together, these results demonstrate that the loss of SIRT6 in endothelial cells is associated with upregulation of genes involved in inflammation, vascular remodelling, and angiogenesis. SIRT6 may be a potential pharmacological target for inflammatory vascular diseases.
    Mediators of Inflammation 10/2012; 2012:597514. DOI:10.1155/2012/597514 · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal human pregnancy is considered a state of enhanced oxidative stress. In pregnancy, it plays important roles in embryo development, implantation, placental development and function, fetal development, and labor. However, pathologic pregnancies, including gestational diabetes mellitus (GDM), are associated with a heightened level of oxidative stress, owing to both overproduction of free radicals and/or a defect in the antioxidant defenses. This has important implications on the mother, placental function, and fetal well-being. Animal models of diabetes have confirmed the important role of oxidative stress in the etiology of congenital malformations; the relative immaturity of the antioxidant system facilitates the exposure of embryos and fetuses to the damaging effects of oxidative stress. Of note, there are only a few clinical studies evaluating the potential beneficial effects of antioxidants in GDM. Thus, whether or not increased antioxidant intake can reduce the complications of GDM in both mother and fetus needs to be explored. This review provides an overview and updated data on our current understanding of the complications associated with oxidative changes in GDM.
    Antioxidants & Redox Signaling 06/2011; 15(12):3061-100. DOI:10.1089/ars.2010.3765 · 7.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence highlights parturition as an inflammatory event characterized by leukocyte influx and proinflammatory mediator production in the intrauterine environment. While the mechanisms responsible for the initiation of this inflammatory cascade are not well understood, it is clear that these inflammatory events must be tightly regulated as the premature activation of these inflammatory signals is associated with adverse pregnancy outcomes, such as preterm labor, which is the leading cause of neonatal mortality and morbidity. In this article we highlight the importance of anti-inflammatory factors in regulating the inflammatory events surrounding parturition and discuss the use of anti-inflammatory mediators as potential novel therapeutic agents in the treatment of inflammation-induced preterm labor.
    Expert Review of Clinical Immunology 09/2011; 7(5):675-96. DOI:10.1586/eci.11.58 · 3.34 Impact Factor
Show more

Similar Publications