Article

Image-based chemical screening identifies drug efflux inhibitors in lung cancer cells.

Medical Systems Biology Laboratory, Center for Bioengineering and Informatics, The Methodist Hospital Research Institute, Houston, Texas 77030, USA.
Cancer Research (Impact Factor: 9.28). 10/2010; 70(19):7723-33. DOI: 10.1158/0008-5472.CAN-09-4360
Source: PubMed

ABSTRACT Cancer cells with active drug efflux capability are multidrug resistant and pose a significant obstacle for the efficacy of chemotherapy. Moreover, recent evidence suggests that high drug efflux cancer cells (HDECC) may be selectively enriched with stem-like cancer cells, which are believed to be the cause for tumor initiation and recurrence. There is a great need for therapeutic reagents that are capable of eliminating HDECCs. We developed an image-based high-content screening (HCS) system to specifically identify and analyze the HDECC population in lung cancer cells. Using the system, we screened 1,280 pharmacologically active compounds that identified 12 potent HDECC inhibitors. It is shown that these inhibitors are able to overcome multidrug resistance (MDR) and sensitize HDECCs to chemotherapeutic drugs, or directly reduce the tumorigenicity of lung cancer cells possibly by affecting stem-like cancer cells. The HCS system we established provides a new approach for identifying therapeutic reagents overcoming MDR. The compounds identified by the screening may potentially be used as potential adjuvant to improve the efficacy of chemotherapeutic drugs.

Download full-text

Full-text

Available from: Stephen TC Wong, Feb 26, 2014
0 Followers
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review highlights the concepts, recent applications and limitations of High Throughput Screening (HTS) flow cytometry-based efflux inhibitory assays. This platform has been employed in mammalian and yeast efflux systems leading to the identification of small molecules with transporter inhibitory capabilities. This technology offers the possibility of substrate multiplexing and may promote novel strategies targeting microbial efflux systems. This platform can generate a comprehensive dataset that may support efforts to map the interface between chemistry and transporter biology in a variety of pathogenic systems.
    Drug Discovery Today Technologies 06/2014; 12. DOI:10.1016/j.ddtec.2014.03.010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PTP4A3 gene is highly expressed in human colon cancer and often associates with enhanced metastatic potential. Genetic disruption of the mouse Ptp4a3 gene reduces the frequency of colon tumor formation in mice treated in a colitis-associated cancer model. In the current study, we have examined the role of Ptp4a3 in the tumor-initiating cell population of mouse colon tumors using an in vitro culture system. Tumors generated in vivo following AOM/DSS treatment were isolated, dissociated, and expanded on a feeder layer resulting in a CD133+ cell population, which expressed high levels of Ptp4a3. Tumor cells deficient for Ptp4a3 exhibited reduced clonogenicity and growth potential relative to WT cells as determined by limiting dilution analysis. Importantly, expanded tumor cells from WT mice readily formed secondary tumors when transplanted into nude mice, while tumor cells without Ptp4a3 expression failed to form secondary tumors and thus were not tumorigenic. These results demonstrate that Ptp4a3 contributes to the malignant phenotype of tumor-initiating cells and supports its role as a potential therapeutic target to inhibit tumor self-renewal and metastasis.
    Stem Cell Research 07/2014; 13(1). DOI:10.1016/j.scr.2014.05.004 · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput screening (HTS) is a technology widely used for early stages of drug discovery in pharmaceutical and biotechnology industries. Recent hardware and software improvements have enabled HTS to be used in combination with subcellular resolution microscopy, resulting in cell image-based HTS, called high-content screening (HCS). HCS allows the acquisition of deeper knowledge at a single-cell level such that more complex biological systems can be studied in a high-throughput manner. The technique is particularly well-suited for stem cell research and drug discovery, which almost inevitably require single-cell resolutions for the detection of rare phenotypes in heterogeneous cultures. With growing availability of facilities, instruments, and reagent libraries, small-to-moderate scale HCS can now be carried out in regular academic labs. We envision that the HCS technique will play an increasing role in both basic mechanism study and early-stage drug discovery on stem cells. Here, we review the development of HCS technique and its past application on stem cells and discuss possible future developments.
    Stem Cells 09/2012; 30(9):1800-7. DOI:10.1002/stem.1168 · 7.70 Impact Factor