• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imatinib is remarkably effective in treating newly diagnosed patients with chronic myeloid leukemia (CML) in chronic phase (CP). To date, most of the available data come from a single multicenter study in which some of the patients were censored for diverse reasons. Here, we report our experience in treating patients at a single institution in a setting where all events were recorded. A total of 204 consecutive adult patients with newly diagnosed CML in CP received imatinib from June 2000 until August 2006. Response (hematologic, cytogenetic, and molecular), progression-free survival (PFS) and survival were evaluated. At 5 years, cumulative incidences of complete cytogenetic response (CCyR) and major molecular response (MMR) were 82.7% and 50.1%, respectively. Estimated overall survival and PFS were 83.2% and 82.7%, respectively. By 5 years, 25% of patients had discontinued imatinib treatment because of an unsatisfactory response and/or toxicity. The 5-year probability of remaining in major cytogenetic response while still receiving imatinib was 62.7%. Patients achieving a CCyR at 1 year had a better PFS and overall survival than those failing to reach CCyR, but achieving a MMR conferred no further advantage. The identification of a kinase domain mutation was the only factor predicting for loss of CCyR. Imatinib is highly effective in most patients with CML-CP; patients who respond are likely to live substantially longer than those treated with earlier therapies. Achieving CCyR correlated with PFS and overall survival, but achieving MMR had no further predictive value. However, approximately one third of patients still need better therapy.
    Journal of Clinical Oncology 07/2008; 26(20):3358-63. DOI:10.1200/JCO.2007.15.8154 · 18.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic myeloid leukemia (CML) is thought to arise from a pluripotent hematopoietic stem cell that has undergone a reciprocal translocation between the BCR gene on chromosome 22 and the ABL proto-oncogene on chromosome 9. This rearrangement results in a shortened chromosome 22, designated the Philadelphia (Ph) chromosome. The Ph chromosome has been found in cells from all hematopoietic lineages except mature T lymphocytes. To examine this issue, we combined fluorescence-activated cell sorting (FACS) and fluorescence in situ hybridization (FISH) to study lineage involvement of mature cells and stem cells in 12 patients with CML in the chronic phase. We found Ph chromosomes in myeloid cells and most B lymphocytes (CD19(+)) but not in mature T cells (CD3(+)) or natural killer (NK) cells (CD3(-)56(+)). Moreover, evidence of BCR/ABL fusion was found in pluripotent stem cells (CD34(+)Thy-1(+)), B-progenitor cells (CD34(+)CD19(+)), T/NK progenitor cells (CD34(+)CD7(+) cells), and T progenitor cells (CD34(+)CD7(+)CD5(+)) with a frequency equal to that in all CD34(+) cells isolated by FACS from bone marrow cells. T lymphocytes showed a marked decrease in Ph+ cells between progenitor cells and mature cells. Moreover, the ratios of Ph+ to Ph- cells in mature T cells and NK cells were below background levels, whereas Ph+ B lymphocytes also decreased during their maturation. These data suggest that Ph+ lymphocytes are eliminated during differentiation. In contrast to FISH of blood and bone marrow, which gives information principally about mature cells, the technique of "sorter FISH (FACS + FISH)" provides a powerful tool to explore the cytogenetic changes in immature cell populations of stem cell diseases based on immunophenotypes. Further clarification of genetic changes in stem cells could be achieved by using sorter FISH with monoclonal antibodies.
    Blood 01/1999; 92(12):4758-63. · 10.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The introduction of imatinib mesylate (IM) has revolutionized the treatment of chronic myeloid leukemia (CML). Although experience is too limited to permit evidence-based evaluation of survival, the available data fully justify critical reassessment of CML management. The panel therefore reviewed treatment of CML since 1998. It confirmed the value of IM (400 mg/day) and of conventional allogeneic hematopoietic stem cell transplantation (alloHSCT). It recommended that the preferred initial treatment for most patients newly diagnosed in chronic phase should now be 400 mg IM daily. A dose increase of IM, alloHSCT, or investigational treatments were recommended in case of failure, and could be considered in case of suboptimal response. Failure was defined at 3 months (no hematologic response [HR]), 6 months (incomplete HR or no cytogenetic response [CgR]), 12 months (less than partial CgR [Philadelphia chromosome-positive (Ph(+)) > 35%]), 18 months (less than complete CgR), and in case of HR or CgR loss, or appearance of highly IM-resistant BCR-ABL mutations. Suboptimal response was defined at 3 months (incomplete HR), 6 months (less than partial CgR), 12 months (less than complete CgR), 18 months (less than major molecular response [MMolR]), and, in case of MMolR loss, other mutations or other chromosomal abnormalities. The importance of regular monitoring at experienced centers was highlighted.
    Blood 10/2006; 108(6):1809-20. DOI:10.1182/blood-2006-02-005686 · 10.43 Impact Factor