Article

Induction of protective immunity by vaccination with wild-type apo superoxide dismutase 1 in mutant SOD1 transgenic mice.

Molecular Neuroscience Research Center, Shiga University of Medical Science; Shiga, Japan.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 4.35). 10/2010; 69(10):1044-56. DOI: 10.1097/NEN.0b013e3181f4a90a
Source: PubMed

ABSTRACT Vaccinations targeting extracellular superoxide dismutase 1 (SOD1) mutants are beneficial in mouse models of amyotrophic lateral sclerosis (ALS). Because of its misfolded nature, wild-type nonmetallated SOD1 protein (WT-apo) may have therapeutic application for vaccination of various SOD1 mutants. We compared the effects of WT-apo to those of a G93A SOD1 vaccine in low-copy G93A SOD1 transgenic mice. Both SOD1 vaccines induced antibody against G93A SOD1 and significantly delayed disease onset compared with saline/adjuvant controls. WT-apo SOD1 significantly extended the life span of vaccinated mice. The vaccines potentiated TH2 deviation in the spinal cord as determined by the ratio of interleukin-4 to interferon-γ (IFNγ) or tumor necrosis factor and induced C1q deposition around motor neurons. Transgenic mice had abundant microglial expression of signal transducers and activators of transcription 4, an activator of transcription of IFNγ, in the spinal cord implicating IFNγ in the pathogenesis. On the other hand, the sera from G93A SOD1-vaccinated mice showed higher IFNγ or tumor necrosis factor and yielded a lower IgG1/IgG2c ratio than the sera from WT-apo-vaccinated mice. These results indicate that the TH1/TH2 milieu is affected by specific vaccinations and that antigenicity might counteract beneficial effects by enhancing TH1 immunity. Thus, because of its lower TH1 induction, WT-apo may be a therapeutic option and have broader application in ALS associated with diverse SOD1 mutations.

0 Bookmarks
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence from mice expressing ALS-causing mutations in superoxide dismutase (SOD1) has implicated pathological immune responses in motor neuron degeneration. This includes microglial activation, lymphocyte infiltration, and the induction of C1q, the initiating component of the classic complement system that is the protein-based arm of the innate immune response, in motor neurons of multiple ALS mouse models expressing dismutase active or inactive SOD1 mutants. Robust induction early in disease course is now identified for multiple complement components (including C1q, C4, and C3) in spinal cords of SOD1 mutant-expressing mice, consistent with initial intraneuronal C1q induction, followed by global activation of the complement pathway. We now test if this activation is a mechanistic contributor to disease. Deletion of the C1q gene in mice expressing an ALS-causing mutant in SOD1 to eliminate C1q induction, and complement cascade activation that follows from it, is demonstrated to produce changes in microglial morphology accompanied by enhanced loss, not retention, of synaptic densities during disease. C1q-dependent synaptic loss is shown to be especially prominent for cholinergic C-bouton nerve terminal input onto motor neurons in affected C1q-deleted SOD1 mutant mice. Nevertheless, overall onset and progression of disease are unaffected in C1q- and C3-deleted ALS mice, thus establishing that C1q induction and classic or alternative complement pathway activation do not contribute significantly to SOD1 mutant-mediated ALS pathogenesis in mice.
    Proceedings of the National Academy of Sciences 10/2013; · 9.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the aberrant assembly of mutant superoxide dismutase 1 (mSOD1) is implicated in the pathogenesis of familial amyotrophic lateral sclerosis (ALS), the molecular basis of SOD1 oligomerization remains undetermined. We investigated the roles of transglutaminase 2 (TG2), an endogenous cross-linker in mSOD1-linked ALS. TG2 interacted preferentially with mSOD1 and promoted its oligomerization in transfected cells. Purified TG2 directly oligomerized recombinant mutant SOD1 and the apo-form of the wild-type SOD1 proteins in a calcium-dependent manner, indicating that misfolded SOD1 is a substrate of TG2. Moreover, the non-cell-autonomous effect of extracellular TG2 on the neuroinflammation was suggested, since the TG2-mediated soluble SOD1 oligomers induced tumor necrosis factor-α, interleukin-1β, and nitric oxide in microglial BV2 cells. TG2 was up-regulated in the spinal cord of presymptomatic G93A SOD1 transgenic mice and in the hypoglossal nuclei of mice suffering nerve ligation. Furthermore, inhibition of spinal TG2 by cystamine significantly delayed the progression and reduced SOD1 oligomers and microglial activation. These results indicate a novel role of TG2 in SOD1 oligomer-mediated neuroinflammation, as well as in the involvement in the intracellular aggregation of misfolded SOD1 in ALS.
    Journal of Neurochemistry 08/2013; · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is emerging evidence that the misfolding of superoxide dismutase 1 (SOD1) may represent a common pathogenic event in both familial and sporadic amyotrophic lateral sclerosis (ALS). To reduce the burden of misfolded SOD1 species in the nervous system, we have tested a novel therapeutic approach based on adeno-associated virus (AAV)-mediated tonic expression of a DNA construct encoding a secretable single-chain fragment variable (scFv) antibody composed of the variable heavy and light chain regions of a monoclonal antibody (D3H5) binding specifically to misfolded SOD1. A single intrathecal injection of the AAV encoding the single-chain antibody in SOD1(G93A) mice at 45 days of age resulted in sustained expression of single-chain antibodies in the spinal cord, and it delayed disease onset and extension of life span by up to 28%, in direct correlation with scFv titers in the spinal cord. The treatment caused attenuation of neuronal stress signals and reduction in levels of misfolded SOD1 in the spinal cord of SOD1(G93A) mice. From these results, we propose that an immunotherapy based on intrathecal inoculation of AAV encoding a secretable scFv against misfolded SOD1 should be considered as potential treatment for ALS, especially for individuals carrying SOD1 mutations.Molecular Therapy (2014); doi:10.1038/mt.2013.239.
    Molecular Therapy 10/2013; · 7.04 Impact Factor