Article

Peripheral modulation of pheromone response by inhibitory host compound in a beetle

Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden.
Journal of Experimental Biology (Impact Factor: 3). 10/2010; 213(Pt 19):3332-9. DOI: 10.1242/jeb.044396
Source: PubMed

ABSTRACT We identified several compounds, by gas chromatographic-electroantennographic detection (GC-EAD), that were antennally active in the bark beetle Ips typographus and also abundant in beetle-attacked spruce trees. One of them, 1,8-cineole (Ci), strongly inhibited the attraction to pheromone in the field. Single-sensillum recordings (SSRs) previously showed olfactory receptor neurons (ORNs) on I. typographus antennae selectively responding to Ci. All Ci neurons were found within sensilla co-inhabited by a pheromone neuron responding to cis-verbenol (cV); however, in other sensilla, the cV neuron was paired with a neuron not responding to any test odorant. We hypothesized that the colocalization of ORNs had a functional and ecological relevance. We show by SSR that Ci inhibited spontaneous activity of the cV neuron only in sensilla in which the Ci neuron was also present. Using mixtures of cV and Ci, we further show that responses to low doses (1-10 ng) of cV were significantly reduced when the colocalized Ci neuron simultaneously responded to high doses (1-10 μg) of Ci. This indicated that the response of the Ci neuron, rather than ligand-receptor interactions in the cV neuron, caused the inhibition. Moreover, cV neurons paired with Ci neurons were more sensitive to cV alone than the ones paired with the non-responding ORN. Our observations question the traditional view that ORNs within a sensillum function as independent units. The colocalization of ORNs might sharpen adaptive responses to blends of semiochemicals with different ecological significance in the olfactory landscape.

Download full-text

Full-text

Available from: Qing-He Zhang, Jul 05, 2015
1 Follower
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seed-eating Apion weevils (Coleoptera: Apionidae) cause large economic losses in white and red clover seed production across Europe. Monitoring and control of clover weevils would be facilitated by semiochemical-based methods. Until now, however, nothing was known about physiological or behavioral responses to semiochemicals in this insect group. Here we analyzed the antenna of the white clover (Trifolium repens L.) specialist Apion fulvipes Geoffroy with scanning electron microscopy, and used single sensillum recordings with a set of 28 host compounds to characterize 18 classes of olfactory sensory neurons (OSNs). Nine of the OSN classes responded strongly to synthetic compounds with high abundance in clover leaves, flowers, or buds. Eight classes responded only weakly to the synthetic stimuli, whereas one collective class responded exclusively to volatiles released from a crushed clover leaf. The OSNs showed a remarkable degree of specificity, responding to only one or a few chemically related compounds. In addition, we recorded a marked difference in the temporal dynamics of responses between different neurons, compounds, and doses. The identified physiologically active compounds will be screened for behavioral activity, with the ultimate goal to develop an odor-based control strategy for this pest.
    Journal of insect physiology 07/2012; 58(10):1325-33. DOI:10.1016/j.jinsphys.2012.07.006 · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemically mediated behaviour of insects is often strongly affected by mixtures of odour stimuli and their temporal characteristics. Both sensory transduction and central processing of odour mixtures can give rise to several different kinds of interaction, which can influence how individual components are perceived and processed. In particular, odour mixtures have been examined in model experiments as premixed binary mixtures in comparison with pure odour stimuli. Only in few experiments, the influence of the temporal structure of odour mixtures on odour perception has been taken into account. Natural odour stimuli often have a pulsed structure and may in general be superimposed on a background of irrelevant or interfering compounds, which can fluctuate with different frequencies, depending on their source. To achieve a better representation of these natural conditions, our odour mixing experiments apply a new kind of stimulation protocol: odours were not premixed but superimposed with a specific time pattern; one odour stimulus was presented as a longer persisting background and the second stimulus was a superimposed short test signal. To gain an overview of odour interaction patterns in the Colorado potato beetle by causing adaptation of one receptor population at naturally occurring levels of concentration and time intervals, electroantennographic recordings were made on excised antennae. A matrix of 12 stimulus compounds led to 132 pairs of compounds tested, each in the role of background and test stimulus. In 64 cases, the interaction was significantly different, when the role of background and stimulus was exchanged. Interaction patterns ranging from no interference (independence) to suppression were found and assigned to four clearly distinguishable types. We discuss that the observed effects of the presentation sequence in odour mixtures may contribute to the mechanisms of olfactory pattern recognition and olfactory contrast perception by insects.
    Journal of Applied Entomology 06/2012; 136(5). DOI:10.1111/j.1439-0418.2011.01653.x · 1.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In conifers, terpene synthases (TPSs) of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress. The availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs) and full-length cDNAs in several spruce (Picea) species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes. This number is comparable to the number of TPSs found in any of the sequenced and well-annotated angiosperm genomes. We functionally characterized a total of 21 spruce TPSs: 12 from Sitka spruce (P. sitchensis), 5 from white spruce (P. glauca), and 4 from hybrid white spruce (P. glauca × P. engelmannii), which included 15 monoterpene synthases, 4 sesquiterpene synthases, and 2 diterpene synthases. The functional diversity of these characterized TPSs parallels the diversity of terpenoids found in the oleoresin and volatile emissions of Sitka spruce and provides a context for understanding this chemical diversity at the molecular and mechanistic levels. The comparative characterization of Sitka spruce and Norway spruce diterpene synthases revealed the natural occurrence of TPS sequence variants between closely related spruce species, confirming a previous prediction from site-directed mutagenesis and modelling.
    BMC Plant Biology 03/2011; 11(1):43. DOI:10.1186/1471-2229-11-43 · 3.94 Impact Factor