CD48: A co-stimulatory receptor of immunity.

Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
The international journal of biochemistry & cell biology (Impact Factor: 4.24). 01/2011; 43(1):25-8. DOI: 10.1016/j.biocel.2010.09.001
Source: PubMed

ABSTRACT The CD48 molecule is a glycosyl-phosphatidyl-inositol (GPI)-anchored cell-surface protein of the CD2 family of molecules. Originally described on virally-induced B cells, CD48 has been found on various hematopoietic cells, and its expression is regulated by viral and bacterial products and immune-associated proteins. CD48 binds CD2 and other molecules, yet its high-affinity ligand in both mouse and human systems is 2B4. Despite its lack of an intracellular domain, stimulation of CD48 induces rearrangement of signaling factors in lipid rafts, Lck-kinase activity, and tyrosine phosphorylation. As an adhesion and co-stimulatory molecule, CD48 induces numerous effects in B and T lymphocytes, natural killer cells, mast cells, and eosinophils. Some of these depend upon cell-cell interactions via 2B4-CD48 binding. The structural and phenotypic characteristics of CD48, and its role in physiological and pathophysiological processes, are reviewed herein. Possible CD48-based applications for immune-impaired and inflammatory disorders are discussed as well.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The problem of gamma-heating measurements in a mixed gamma and neutron field is considered. Theoretical background is provided, and current work is reviewed. An experimental system for gamma-heating measurements has been designed and built. Techniques for calibration and neutron-signal rejection have been developed and examined. An experiment designed to test the applicability of the developed techniques has been built. Numerical modeling of the experiment is planned. It is hoped that by comparing calculated to experimental results, a clear picture of gamma heating in a mixed gamma and neutron environment can be obtained
    Fusion Engineering, 1989. Proceedings., IEEE Thirteenth Symposium on; 11/1989
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cell activation is strictly regulated to ensure that healthy cells are preserved, but tumour-transformed or virus-infected cells are recognized and eliminated. To carry out this selective killing, NK cells have an ample repertoire of receptors on their surface. Signalling by inhibitory and activating receptors by interaction with their ligands will determine whether the NK cell becomes activated and kills the target cell. Here, we show reduced expression of NKp46, NKp30, DNAM-1, CD244 and CD94/NKG2C activating receptors on NK cells from acute myeloid leukaemia patients. This reduction may be induced by chronic exposure to their ligands on leukaemic blasts. The analysis of ligands for NK cell-activating receptors showed that leukaemic blasts from the majority of patients express ligands for NK cell-activating receptors. DNAM-1 ligands are frequently expressed on blasts, whereas the expression of the NKG2D ligand MICA/B is found in half of the patients and CD48, a ligand for CD244, in only one-fourth of the patients. The decreased expression of NK cell-activating receptors and/or the heterogeneous expression of ligands for major receptors on leukaemic blasts can lead to an inadequate tumour immunosurveillance by NK cells. A better knowledge of the activating receptor repertoire on NK cells and their putative ligands on blasts together with the possibility to modulate their expression will open new possibilities for the use of NK cells in immunotherapy against leukaemia.
    Cancer Immunology and Immunotherapy 06/2011; 60(8):1195-205. DOI:10.1007/s00262-011-1050-2 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymorphisms in the SLAM family of leukocyte cell surface regulatory molecules have been associated with lupus-like phenotypes in both humans and mice. The murine Slamf gene cluster lies within the lupus-associated Sle1b region of mouse chromosome 1. Non-autoreactive C57BL/6 (B6) mice that have had this region replaced by syntenic segments from other mouse strains (i.e. 129, NZB and NZW) are B6 congenic strains that spontaneously produce non-nephritogenic lupus-like autoantibodies. We have recently reported that genetic ablation of the SLAM family member CD48 (Slamf2) drives full-blown autoimmune disease with severe proliferative glomerulonephritis (CD48GN) in B6 mice carrying 129 sequences of the Sle1b region (B6.129CD48(-/-)). We also discovered that BALB/c mice with the same 129-derived CD48-null allele (BALB.129CD48(-/-)) have neither nephritis nor anti-DNA autoantibodies, indicating that strain specific background genes modulate the effects of CD48 deficiency. Here we further examine this novel model of lupus nephritis in which CD48 deficiency transforms benign autoreactivity into fatal nephritis. CD48GN is characterized by glomerular hypertrophy with mesangial expansion, proliferation and leukocytic infiltration. Immune complexes deposit in mesangium and in sub-endothelial, sub-epithelial and intramembranous sites along the glomerular basement membrane. Afflicted mice have low-grade proteinuria, intermittent hematuria and their progressive renal injury manifests with elevated urine NGAL levels and with uremia. In contrast to the lupus-like B6.129CD48(-/-) animals, neither BALB.129CD48(-/-) mice nor B6 × BALB/c F1.129CD48(-/-) progeny have autoimmune traits, indicating that B6-specific background genes modulate the effect of CD48 on lupus nephritis in a recessive manner.
    Journal of Autoimmunity 08/2011; 37(1):48-57. DOI:10.1016/j.jaut.2011.03.004 · 7.02 Impact Factor


Available from