Espinosa, L. et al. The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell 18, 268-281

Cancer Research Program, Institut Municipal d'Investigacions Mèdiques, (IMIM), Hospital del Mar, 08003 Barcelona, Spain.
Cancer cell (Impact Factor: 23.52). 09/2010; 18(3):268-81. DOI: 10.1016/j.ccr.2010.08.006
Source: PubMed

ABSTRACT It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo.

54 Reads
  • Source
    • "This effect depends on the phosphorylation of IKBKB (IKKβ), which is conducted by TAK1. Furthermore, Hes1 directly represses expression of the deubiquitinase CYLD, a negative IKK complex regulator, which is sufficient to upregulate downstream TAK1 activity, IKK phosphorylation, NFKBIA degradation, and finally, NF-κB activity (Espinosa et al., 2010; Reiley et al., 2007). Maml1 modulates NF-κB function by two possible methods in cultured cells that regulate cell survival. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells. Copyright © 2014. Published by Elsevier B.V.
    Gene 12/2014; 558(1). DOI:10.1016/j.gene.2014.12.054 · 2.14 Impact Factor
  • Source
    • "As of today, little is still known about transcriptional regulation of CYLD. However, CYLD mRNA transcription is directly inhibited by Snail [28] and the Notch target Hes1 [29], both of which are up-regulated and activated under hypoxic conditions [34, 35]. Another finding worth noting is that hypoxia stimulates human papilloma virus-encoded E6 protein to promote ubiquitination and proteasomal degradation of CYLD in human papilloma virus-positive squamous cell carcinoma cell lines [36]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cylindromatosis (CYLD) is a tumor suppressor that regulates signaling pathways by acting as a deubiquitinating enzyme. CYLDdown-regulation occurred in several malignancies, with tumor-promoting effects. Although we found loss of CYLD expression in hypoxic regions of human glioblastoma multiforme (GBM), the most aggressive brain tumor, biological roles of CYLD in GBM remain unknown. This study aimed to determine the biological significance of CYLD down-regulation to GBM progression and therapy. CYLD mRNA transcription was dramatically down-regulated in hypoxic GBM cells, consistent with our clinical observations of human GBM tissues. Hypoxia enhanced both basal and tumor necrosis factor-α-induced expression of various proinflammatory cytokines, whereas CYLD overexpression strongly counteracted these responses. In addition, chronic anti-angiogenic therapy with bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, with enhanced hypoxia produced responses similar to these CYLD-regulated proinflammatory responses in a xenograft mouse model. Histologically, CYLD clearly prevented massive immune cell infiltration surrounding necrotic regions, and pseudopalisades appeared in bevacizumab-treated control tumors. Furthermore, CYLD overexpression, which had no impact on survival by itself, significantly improved the prosurvival effect of bevacizumab. These data suggest that CYLD down-regulation is crucial for hypoxia-mediated inflammation in GBM, which may affect the long-term efficacy of anti-VEGF therapy.
    Oncotarget 07/2014; 5(15). DOI:10.18632/oncotarget.2216 · 6.36 Impact Factor
  • Source
    • "Previous studies found that Notch1 modulates NF-κB activity in macrophages and cancer cells [24], [40]. We recently found in human AVICs that Jagged1 enhances NF-κB activation, and NICD interacts with IKK [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aortic valve calcification causes the progression of calcific aortic valve disease (CAVD). Stimulation of aortic valve interstitial cells (AVICs) with lipopolysaccharide (LPS) up-regulates the expression of osteogenic mediators, and NF-κB plays a central role in mediating AVIC osteogenic responses to Toll-like receptor 4 (TLR4) stimulation. Diseased aortic valves exhibit greater levels of oxidized low-density lipoprotein (oxLDL). This study tested the hypothesis that oxLDL augments the osteogenic responses in human AVICs through modulation of NF-κB and Notch1 activation. AVICs isolated from normal human aortic valves were treated with LPS (0.1 µg/ml), oxLDL (20 µg/ml) or LPS plus oxLDL for 48 h. OxLDL alone increased cellular bone morphogenetic protein-2 (BMP-2) levels while it had no effect on alkaline phosphatase (ALP) levels. Cells exposed to LPS plus oxLDL produced higher levels of BMP-2 and ALP than cells exposed to LPS alone. Further, LPS plus oxLDL induced greater NF-κB activation, and inhibition of NF-κB markedly reduced the expression of BMP-2 and ALP in cells treated with LPS plus oxLDL. OxLDL also induced Notch1 activation and resulted in augmented Notch1 activation when it was combined with LPS. Inhibition of Notch1 cleavage attenuated NF-κB activation induced by LPS plus oxLDL, and inhibition of NF-κB suppressed the expression of BMP-2 and ALP induced by the synergistic effect of Jagged1 and LPS. These findings demonstrate that oxLDL up-regulates BMP-2 expression in human AVICs and synergizes with LPS to elicit augmented AVIC osteogenic responses. OxLDL exerts its effect through modulation of the Notch1-NF-κB signaling cascade. Thus, oxLDL may play a role in the mechanism underlying CAVD progression.
    PLoS ONE 05/2014; 9(5):e95400. DOI:10.1371/journal.pone.0095400 · 3.23 Impact Factor
Show more