Article

Regional cortical gray matter thickness differences associated with type 2 diabetes and major depression

Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA.
Psychiatry Research (Impact Factor: 2.68). 11/2010; 184(2):63-70. DOI: 10.1016/j.pscychresns.2010.07.003
Source: PubMed

ABSTRACT The purpose of this study was to examine the effect of type 2 diabetes with major depression on cortical gray matter using magnetic resonance imaging and cortical pattern matching techniques. We hypothesized that diabetic subjects and depressed diabetic subjects would demonstrate decreased cortical gray matter thickness in prefrontal areas as compared to healthy control subjects. Patients with type 2 diabetes (n=26) and patients with diabetes and major depression (n=26) were compared with healthy controls (n=20). Gray matter thickness across the entire cortex was measured using cortical pattern matching methods. All subjects with diabetes demonstrated decreased cortical gray matter thickness in the left anterior cingulate region. Additionally, depressed diabetic subjects showed significant cortical gray matter decreases in bilateral prefrontal areas compared with healthy controls. Correlations between clinical variables and cortical gray matter thickness revealed a significant negative relationship with cerebrovascular risk factors across all three groups, most consistently in the left dorsomedial prefrontal cortex. A significant positive relationship between performance on attention and executive function tasks and cortical gray matter thickness predominantly in left hemisphere regions was also seen across all subjects. Depression and diabetes are associated with significant cortical gray matter thinning in medial prefrontal areas.

Download full-text

Full-text

Available from: Olusola Ajilore, Jul 02, 2015
0 Followers
 · 
143 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective The purpose of this study was to examine the relationship between verbal learning and memory performance and hippocampal volume in subjects with co-morbid type 2 diabetes and major depression compared with healthy control subjects and subjects with type 2 diabetes alone. Methods Twenty four subjects with type 2 diabetes and 20 subjects with type 2 diabetes and major depression were recruited from endocrinology clinics and were compared with 32 healthy control subjects recruited from the community. Subjects were scanned on a 1.5 T GE scanner, and hippocampal volumes were measured using Freesurfer. The California Verbal Learning Test assessed learning and memory. Significant predictors of verbal learning performance (e.g., age, gender, education, blood pressure, stroke risk, hemoglobin A1c, and hippocampal volume) were determined using a stepwise linear regression. ResultsSubjects with diabetes and depression had significantly worse performance on verbal list learning compared with healthy control subjects. Hippocampal volume was a strong predictor of performance in healthy control subjects, and age and hippocampal volume were strong predictors in subjects with type 2 diabetes alone. Age alone was a significant predictor of verbal learning performance in subjects with diabetes and depression. Conclusions The relationship between hippocampal volume and performance on the California Verbal Learning Test is decoupled in subjects with type 2 diabetes and major depression and this decoupling may contribute to poor verbal learning and memory performance in this study population. Copyright (c) 2014 John Wiley & Sons, Ltd.
    International Journal of Geriatric Psychiatry 04/2015; 30(4). DOI:10.1002/gps.4149 · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Type 2 diabetes mellitus is characterized by metabolic dysregulation in the form of hyperglycemia and insulin resistance and can have a profound impact on brain structure and vasculature. The primary aim of this study was to identify brain regions where the combined effects of type 2 diabetes and hypertension on brain health exceed those of hypertension alone. A secondary objective was to test whether vascular impairment and structural brain measures in this population are associated with cognitive function. Research design and methods We enrolled 18 diabetic participants with hypertension (HTN + T2DM, 7 women, 71.8 ± 5.6 years) and 22 participants with hypertension only (HTN, 12 women, 73.4 ± 6.2 years). Cerebrovascular reactivity (CVR) was assessed using blood oxygenation level dependent (BOLD) MRI during successive breath holds. Grey matter structure was evaluated using cortical thickness (CThk) measures estimated from T1-weighted images. Analyses of cognitive and blood data were also performed. Results Compared to HTN, HTN + T2DM had decreased CVR and CThk in a spatially overlapping region of the right occipital lobe (P < 0.025); CVR group differences were more expansive and included bilateral occipito-parietal areas (P < 0.025). Whereas CVR showed no significant associations with measures of cognitive function (P > 0.05), CThk in the right lingual gyrus ROI and regions resulting from a vertex-wise analysis (including posterior cingulate, precuneus, superior and middle frontal, middle and inferior temporal regions (P < 0.025) were associated with executive function. Conclusions Individuals with T2DM and HTN showed decreased CVR and CThk compared to age-matched HTN controls. This study identifies brain regions that are impacted by the combined effects of comorbid T2DM and HTN conditions, with new evidence that the corresponding cortical thinning may contribute to cognitive decline.
    01/2014; 5. DOI:10.1016/j.nicl.2014.05.020
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that diabetes mellitus may cause neuropsychiatric disorders such as anxiety disorders. Diabetes may also cause reduced IGF-1 (insulin like growth factor-1) levels in brain and blood. The purpose of the present study was to investigate the relationship between diabetes induced anxiety and IGF-1 levels in diabetic rats. The anxiety levels of rats were assessed 2 weeks after intraperitoneal injection of streptozotocin. Diabetic rats had higher levels of anxiety, as they spent more time in closed branches in elevated-plus-maze-test and less time in the center cells of open-field-arena. Prefrontal cortex (PFC) IGF-1 levels and neuron numbers were decreased and apoptosis was increased in diabetic rats. Blood IGF-1 levels decreased in a time dependent fashion following streptozotocin injection while blood corticosterone levels increased. They had higher malondialdehyde levels and lower superoxide dismutase enzyme activity. Oxidative stress may negatively affect blood and PFC tissue IGF-1 levels. Reduction in IGF-1 may cause PFC damage, which may eventually trigger anxiety in diabetic rats. Therapeutic strategies that increase blood and brain tissue IGF-1 levels may be promising to prevent psychiatric sequelae of diabetes mellitus.
    Neuroscience Letters 11/2012; 531(2). DOI:10.1016/j.neulet.2012.10.045 · 2.06 Impact Factor