Article

IFN-γ and IL-17: The two faces of T-cell pathology in giant cell arteritis

Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305-5166, USA.
Current opinion in rheumatology (Impact Factor: 5.07). 01/2011; 23(1):43-9. DOI: 10.1097/BOR.0b013e32833ee946
Source: PubMed

ABSTRACT Granuloma formation in giant cell arteritis (GCA) emphasizes the role of adaptive immunity and highlights the role of antigen-specific T cells. Recent data demonstrate that at least two separate lineages of CD4 T cells participate in vascular inflammation, providing an important clue that multiple disease instigators may initiate pathogenic immunity.
IFN-γ-producing Th1 cells and IL-17-producing Th17 cells have been implicated in GCA. Patients with biopsy-positive GCA underwent two consecutive temporal artery biopsies, one prior to therapy and one while on corticosteroids. In untreated patients, Th1 and Th17 cells co-existed in the vascular lesions. Following therapy, Th17 cells were essentially lost, whereas Th1 cells persisted almost unaffected. In the peripheral blood of untreated patients Th17 frequencies were increased eight-fold, but normalized with therapy. Blood Th1 cells were doubled in frequency, independent of therapy. Corticosteroids functioned by selectively suppressing IL-1β, IL-6 and IL-23-releasing antigen-presenting cells (APCs), disrupting induction of Th17 cells.
At least two distinct CD4 T-cell subsets promote vascular inflammation in GCA. In early disease, APCs promote differentiation of Th17 as well as Th1 cells. Chronic disease is characterized by persistent Th1-inducing signals, independent of IL-17-mediated inflammation. More than one disease instigator may trigger APCs to induce multiple T-cell lineages. Cocktails of therapies will be needed for appropriate disease control.

Download full-text

Full-text

Available from: Cornelia M Weyand, Aug 11, 2015
0 Followers
 · 
116 Views
  • Source
    • "The cellular branch of the adaptive and innate immune systems appears to be central to the pathogenesis of GCA, even though the antigen(s) that trigger the disease remain unknown [30] [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Overview. The GiACTA trial is a multicenter, randomized, double-blind, and placebo-controlled study designed to test the ability of tocilizumab (TCZ), an interleukin (IL)-6 receptor antagonist, to maintain disease remission in patients with giant cell arteritis (GCA). Design. Approximately 100 centers will enroll 250 patients with active disease. The trial consists of a 52-week blinded treatment phase followed by 104 weeks of open-label extension. Patients will be randomized into one of four groups. Group A (TCZ 162 mg weekly plus a 6-month prednisone-taper); group B (TCZ 162 mg every other week plus a 6-month prednisone-taper); group C (placebo plus a 6-month prednisone-taper); and group D (placebo plus a 12-month prednisone taper). We hypothesize that patients assigned to TCZ in addition to a 6-month prednisone course are more likely to achieve the primary efficacy endpoint of sustained remission (SR) at 52 weeks compared with those assigned to a 6-month prednisone course alone, thus potentially minimizing the long-term adverse effects of corticosteroids. Conclusion. GiACTA will test the hypothesis that interference with IL-6 signaling exerts a beneficial effect on patients with GCA. The objective of this paper is to describe the design of the trial and address major issues related to its development.
    International Journal of Rheumatology 04/2013; 2013:912562. DOI:10.1155/2013/912562
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: IFNγ exhibits potent antitumor effects and plays important roles in the innate immunity against cancer. However, the mechanisms accounting for the antiproliferative effects of IFNγ still remain to be elucidated. We examined the role of Mnk1 (MAPK-interacting protein kinase 1) in IFNγ signaling. Our data demonstrate that IFNγ treatment of sensitive cells results in engagement of Mnk1, activation of its kinase domain, and downstream phosphorylation of the cap-binding protein eIF4E on Ser-209. Such engagement of Mnk1 plays an important role in IFNγ-induced IRF-1 (IFN regulatory factor 1) gene mRNA translation/protein expression and is essential for generation of antiproliferative responses. In studies aimed to determine the role of Mnk1 in the induction of the suppressive effects of IFNs on primitive hematopoietic progenitors, we found that siRNA-mediated Mnk1/2 knockdown results in partial reversal of the suppressive effects of IFNγ on human CD34+-derived myeloid (CFU-GM) and erythroid (BFU-E) progenitors. These findings establish a key role for the Mnk/eIF4E pathway in the regulatory effects of IFNγ on normal hematopoiesis and identify Mnk kinases as important elements in the control of IFNγ-inducible ISG mRNA translation.
    Journal of Biological Chemistry 02/2011; 286(8):6017-26. DOI:10.1074/jbc.M110.197921 · 4.57 Impact Factor
Show more