Article

A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst

Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
Development (Impact Factor: 6.27). 10/2010; 137(20):3361-72. DOI: 10.1242/dev.050864
Source: PubMed

ABSTRACT The inner cell mass (ICM) of the implanting mammalian blastocyst comprises two lineages: the pluripotent epiblast (EPI) and primitive endoderm (PrE). We have identified platelet-derived growth factor receptor alpha (PDGFRα) as an early marker of the PrE lineage and its derivatives in both mouse embryos and ex vivo paradigms of extra-embryonic endoderm (ExEn). By combining live imaging of embryos and embryo-derived stem cells expressing a histone H2B-GFP fusion reporter under the control of Pdgfra regulatory elements with the analysis of lineage-specific markers, we found that Pdgfra expression coincides with that of GATA6, the earliest expressed transcriptional regulator of the PrE lineage. We show that GATA6 is required for the activation of Pdgfra expression. Using pharmacological inhibition and genetic inactivation we addressed the role of the PDGF pathway in the PrE lineage. Our results demonstrate that PDGF signaling is essential for the establishment, and plays a role in the proliferation, of XEN cells, which are isolated from mouse blastocyst stage embryos and represent the PrE lineage. Implanting Pdgfra mutant blastocysts exhibited a reduced number of PrE cells, an effect that was exacerbated by delaying implantation. Surprisingly, we also noted an increase in the number of EPI cells in implantation-delayed Pdgfra-null mutants. Taken together, our data suggest a role for PDGF signaling in the expansion of the ExEn lineage. Our observations also uncover a possible role for the PrE in regulating the size of the pluripotent EPI compartment.

0 Followers
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How regulatory information is encoded in the genome is poorly understood and poses a challenge when studying biological processes. We demonstrate here that genomic redistribution of Oct4 by alternative partnering with Sox2 and Sox17 is a fundamental regulatory event of endodermal specification. We show that Sox17 partners with Oct4 and binds to a unique 'compressed' Sox/Oct motif that earmarks endodermal genes. This is in contrast to the pluripotent state where Oct4 selectively partners with Sox2 at 'canonical' binding sites. The distinct selection of binding sites by alternative Sox/Oct partnering is underscored by our demonstration that rationally point-mutated Sox17 partners with Oct4 on pluripotency genes earmarked by the canonical Sox/Oct motif. In an endodermal differentiation assay, we demonstrate that the compressed motif is required for proper expression of endodermal genes. Evidently, Oct4 drives alternative developmental programs by switching Sox partners that affects enhancer selection, leading to either an endodermal or pluripotent cell fate. This work provides insights in understanding cell fate transcriptional regulation by highlighting the direct link between the DNA sequence of an enhancer and a developmental outcome.
    The EMBO Journal 03/2013; DOI:10.1038/emboj.2013.31 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GATA-6 is a zinc-finger transcription factor essential for early embryogenesis. Ablation of GATA-6 in mice impairs endoderm differentiation and causes apoptosis of epiblast cells. The endoderm defects have been attributed to the loss of HNF4, disabled-2, and GATA-4. However, the mechanisms underlying epiblast apoptosis are unclear. In this study we used mouse embryonic stem cell-derived embryoid bodies (EBs) as a model for peri-implantation development and found that ablation of GATA-6 causes massive apoptosis during EB differentiation. Endoderm grafting experiments and ectopic basement membrane (BM) assembly suggest that both BM and non-BM factors contribute to cell survival. Furthermore, the increased cell death in mutant EBs is accompanied by reduced expression of bone morphogenetic protein 2 (BMP-2). Chromatin immunoprecipitation reveals direct binding of GATA-6 to the Bmp2 promoter. Treatment of the mutant EBs with BMP-2 markedly suppresses apoptosis, whereas stable overexpression of the BMP antagonist noggin or a dominant-negative BMP receptor in normal EBs leads to increased apoptosis. Last, activation of SMAD1/5 by phosphorylation is significantly inhibited in the absence of GATA-6, and this is reversed by exogenous BMP-2. Treatment of normal EBs with SMAD phosphorylation inhibitor increases apoptosis. Collectively these results suggest that GATA-6 promotes cell survival by regulating endoderm expression of BMP-2 and BM during embryonic epithelial morphogenesis.
    Molecular biology of the cell 08/2012; 23(18):3754-63. DOI:10.1091/mbc.E12-04-0313 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interactions between the endoderm and mesoderm that mediate myocardial induction are difficult to study in vivo because of the small size of mammalian embryos at relevant stages. However, we and others have demonstrated that signals from endodermal cell lines can influence myocardial differentiation from both mouse and human embryoid bodies (EBs), and because of this, assays that utilize embryonic stem (ES) cells and endodermal cell lines provide excellent in vitro models to study early cardiac differentiation. Extraembryonic endoderm (XEN) stem cells have a particular advantage over other heart-inducing cell lines in that they can easily be derived from both wild type and mutant mouse blastocysts. Here we describe the first isolation of a Nodal mutant XEN stem cell line. Nodal(-/-) XEN cell lines were not isolated at expected Mendelian ratios, and those that were successfully established, showed an increase in markers for the anterior visceral endoderm (AVE). Since AVE represents the heart-inducing endoderm in the mouse, cardiac differentiation was compared in EBs treated with conditioned medium (CM) collected from wild type or Nodal(-/-) XEN cells. EBs treated with CM from Nodal(-/-) cells began beating earlier and showed early activation of myocardial genes, but this early cardiac differentiation did not cause an overall increase in cardiomyocyte yield. By comparison, CM from wild type XEN cells both delayed cardiac differentiation and caused a concomitant increase in overall cardiomyocyte formation. Detailed marker analysis suggested that early activation of cardiac differentiation by Nodal(-/-) XEN CM caused premature differentiation and subsequent depletion of cardiac progenitors.
    03/2012; 1(3):208-19. DOI:10.1242/bio.2012038