Article

A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst

Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
Development (Impact Factor: 6.27). 10/2010; 137(20):3361-72. DOI: 10.1242/dev.050864
Source: PubMed

ABSTRACT The inner cell mass (ICM) of the implanting mammalian blastocyst comprises two lineages: the pluripotent epiblast (EPI) and primitive endoderm (PrE). We have identified platelet-derived growth factor receptor alpha (PDGFRα) as an early marker of the PrE lineage and its derivatives in both mouse embryos and ex vivo paradigms of extra-embryonic endoderm (ExEn). By combining live imaging of embryos and embryo-derived stem cells expressing a histone H2B-GFP fusion reporter under the control of Pdgfra regulatory elements with the analysis of lineage-specific markers, we found that Pdgfra expression coincides with that of GATA6, the earliest expressed transcriptional regulator of the PrE lineage. We show that GATA6 is required for the activation of Pdgfra expression. Using pharmacological inhibition and genetic inactivation we addressed the role of the PDGF pathway in the PrE lineage. Our results demonstrate that PDGF signaling is essential for the establishment, and plays a role in the proliferation, of XEN cells, which are isolated from mouse blastocyst stage embryos and represent the PrE lineage. Implanting Pdgfra mutant blastocysts exhibited a reduced number of PrE cells, an effect that was exacerbated by delaying implantation. Surprisingly, we also noted an increase in the number of EPI cells in implantation-delayed Pdgfra-null mutants. Taken together, our data suggest a role for PDGF signaling in the expansion of the ExEn lineage. Our observations also uncover a possible role for the PrE in regulating the size of the pluripotent EPI compartment.

0 Followers
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells of the inner cell mass (ICM) of the mouse blastocyst differentiate into the pluripotent epiblast or the primitive endoderm (PrE), marked by the transcription factors NANOG and GATA6, respectively. To investigate the mechanistic regulation of this process, we applied an unbiased, quantitative, single-cell-resolution image analysis pipeline to analyze embryos lacking or exhibiting reduced levels of GATA6. We find that Gata6 mutants exhibit a complete absence of PrE and demonstrate that GATA6 levels regulate the timing and speed of lineage commitment within the ICM. Furthermore, we show that GATA6 is necessary for PrE specification by FGF signaling and propose a model where interactions between NANOG, GATA6, and the FGF/ERK pathway determine ICM cell fate. This study provides a framework for quantitative analyses of mammalian embryos and establishes GATA6 as a nodal point in the gene regulatory network driving ICM lineage specification.
    Developmental Cell 05/2014; 29(4). DOI:10.1016/j.devcel.2014.04.011 · 10.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During early development, the mammalian embryo undergoes a series of profound changes that lead to the formation of two extraembryonic tissues-the trophectoderm and the primitive endoderm. These tissues encapsulate the pluripotent epiblast at the time of implantation. The current model proposes that the formation of these lineages results from two consecutive binary cell fate decisions. The first controls the formation of the trophectoderm and the inner cell mass, and the second controls the formation of the primitive endoderm and the epiblast within the inner cell mass. While early mammalian embryos develop with extensive plasticity, the embryonic pattern prior to implantation is remarkably reproducible. Here, we review the molecular mechanisms driving the cell fate decision between primitive endoderm and epiblast in the mouse embryo and integrate data from recent studies into the current model of the molecular network regulating the segregation between these lineages and their subsequent differentiation.
    Cellular and Molecular Life Sciences CMLS 05/2014; 71(17). DOI:10.1007/s00018-014-1630-3 · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pluripotent epiblast (EPI) cells, present in the inner cell mass (ICM) of the mouse blastocyst, are progenitors of both embryonic stem (ES) cells and the fetus. Discovering how pluripotency genes regulate cell fate decisions in the blastocyst provides a valuable way to understand how pluripotency is normally established. EPI cells are specified by two consecutive cell fate decisions. The first decision segregates ICM from trophectoderm (TE), an extraembryonic cell type. The second decision subdivides ICM into EPI and primitive endoderm (PE), another extraembryonic cell type. Here, we investigate the roles and regulation of the pluripotency gene Sox2 during blastocyst formation. First, we investigate the regulation of Sox2 patterning and show that SOX2 is restricted to ICM progenitors prior to blastocyst formation by members of the HIPPO pathway, independent of CDX2, the TE transcription factor that restricts Oct4 and Nanog to the ICM. Second, we investigate the requirement for Sox2 in cell fate specification during blastocyst formation. We show that neither maternal (M) nor zygotic (Z) Sox2 is required for blastocyst formation, nor for initial expression of the pluripotency genes Oct4 or Nanog in the ICM. Rather, Z Sox2 initially promotes development of the primitive endoderm (PE) non cell-autonomously via FGF4, and then later maintains expression of pluripotency genes in the ICM. The significance of these observations is that 1) ICM and TE genes are spatially patterned in parallel prior to blastocyst formation and 2) both the roles and regulation of Sox2 in the blastocyst are unique compared to other pluripotency factors such as Oct4 or Nanog.
    PLoS Genetics 10/2014; 10(10). DOI:10.1371/journal.pgen.1004618 · 8.52 Impact Factor

Full-text

Download
0 Downloads
Available from
Feb 3, 2015