The Prevalence of Congenital Anomalies in Europe

EUROCAT Central Registry, Faculty of Life and Health Sciences, University of Ulster, Newtownabbey, UK.
Advances in Experimental Medicine and Biology (Impact Factor: 1.96). 01/2010; 686:349-64. DOI: 10.1007/978-90-481-9485-8_20
Source: PubMed


EUROCAT (European Surveillance of Congenital Anomalies) is the network of population-based registers of congenital anomaly in Europe, with a common protocol and data quality review, covering 1.5 million annual births in 22 countries. EUROCAT recorded a total prevalence of major congenital anomalies of 23.9 per 1,000 births for 2003-2007. 80% were livebirths. 2.5% of livebirths with congenital anomaly died in the first week of life. 2.0% were stillbirths or fetal deaths from 20 weeks gestation. 17.6% of all cases were terminations of pregnancy following prenatal diagnosis (TOPFA). Thus, congenital anomalies overwhelmingly concern children surviving the early neonatal period, who have important medical, social or educational needs. The prevalence of chromosomal anomalies was 3.6 per 1,000 births, contributing 28% of stillbirths/fetal deaths from 20 weeks gestation with congenital anomaly, and 48% of all TOPFA. Congenital heart defects (CHD) were the most common non-chromosomal subgroup, at 6.5 per 1,000 births, followed by limb defects (3.8 per 1,000), anomalies of urinary system (3.1 per 1,000) and nervous system defects (2.3 per 1,000). In 2004, perinatal mortality associated with congenital anomaly was 0.93 per 1,000 births, and TOPFA 4.4 per 1,000 births, with considerable country variation. Primary prevention of congenital anomalies in the population based on controlling environmental risk factors is a crucial policy priority, including preconceptional care and whole population approaches.

1 Follower
8 Reads
    • "The causes of congenital anomalies include a variety of genetic and environmental factors, with the majority probably involving multifactorial aetiology. In Europe the recorded prevalence of major congenital anomalies is 23.9 per 1000 pregnancies, of which 80% were live births and 20% resulted in termination, fetal death or stillbirth (Dolk et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle, UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to large-scale genomic/transcriptomic studies. Increasingly, HDBR material is enabling the derivation of stem cell lines and contributing towards developments in tissue engineering. Use of the HDBR and other fetal tissue resources discussed here will contribute to the long-term aims of understanding the causation and pathogenesis of congenital anomalies, and developing new methods for their treatment and prevention.
    Development 09/2015; 142(18). DOI:10.1242/dev.122820 · 6.46 Impact Factor
  • Source
    • "Tetralogy of Fallot (TOF) is the most common cyanotic CHD with an incidence of approximately 2.5–3.5/10,000 live births representing 5–7% of all CHD [Perry et al., 1993; Dolk et al., 2010; van der Linde et al., 2011]. Approximately 15% of TOF patients have a chromosome 22q11.2 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tetralogy of Fallot (TOF) (OMIM #187500) is the most frequent conotruncal congenital heart defect (CHD) with a range of intra- and extracardiac phenotypes. TBX5 is a transcription factor with well-defined roles in heart and forelimb development, and mutations in TBX5 are associated with Holt–Oram syndrome (HOS) (OMIM#142900). Here we report on the screening of 94 TOF patients for mutations in TBX5, NKX2.5 and GATA4 genes. We identified two heterozygous mutations in TBX5. One mutation was detected in a Moroccan patient with TOF, a large ostium secundum atrial septal defect and complete atrioventricular block, and features of HOS including bilateral triphalangeal thumbs and fifth finger clinodactyly. This patient carried a previously described de novo, stop codon mutation (p.R279X) located in exon 8 causing a premature truncated protein. In a second patient from Italy with TOF, ostium secundum atrial septal defect and progressive arrhythmic changes on ECG, we identified a maternally inherited novel mutation in exon 9, which caused a substitution of a serine with a leucine at amino acid position 372 (p.S372L, c.1115C>T). The mother's clinical evaluation demonstrated frequent ventricular extrasystoles and an atrial septal aneurysm. Physical examination and radiographs of the hands showed no apparent skeletal defects in either child or mother. Molecular evaluation of the p.S372L mutation demonstrated a gain-of-function phenotype. We also review the literature on the co-occurrence of TOF and HOS, highlighting its relevance. This is the first systematic screening for TBX5 mutations in TOF patients which detected mutations in two of 94 (2.1%) patients. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 12/2014; 164(12). DOI:10.1002/ajmg.a.36783 · 2.16 Impact Factor
  • Source
    • "Many population registries have been set up to gather information on the epidemiology of certain rare diseases. They usually focus on single conditions or groups of diseases, such as congenital malformations [24]. Though they are important, such data registries are challenging to establish and maintain, and it is difficult to judge their ability to describe the epidemiology and global burden of rare diseases at population level [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although rare diseases have become a major public health issue, there is a paucity of population-based data on rare diseases. The aim of this epidemiological study was to provide descriptive figures referring to a sizable group of unrelated rare diseases. Data from the rare diseases registry established in the Veneto Region of north-east Italy (population 4,900,000), referring to the years from 2002 to 2012, were analyzed. The registry is based on a web-based system accessed by different users. Cases are enrolled by two different sources: clinicians working at Centers of expertise officially designated to diagnose and care patients with rare diseases and health professionals working in the Local Health Districts. Deaths of patients are monitored by Death Registry. So far, 19,547 patients with rare diseases have been registered, and 23% of them are pediatric cases. The overall raw prevalence of the rare diseases monitored in the population under study is 33.09 per 10,000 inhabitants (95% CI 32.56-33.62), whilst the overall incidence is 3.85 per 10,000 inhabitants (95% CI 3.67-4.03). The most commonly-recorded diagnoses belong to the following nosological groups: congenital malformations (Prevalence: 5.45/10,000), hematological diseases (4.83/10,000), ocular disorders (4.47/10,000), diseases of the nervous system (3.51/10,000), and metabolic disorders (2,94/10,000). Most of the deaths in the study population occur among pediatric patients with congenital malformations, and among adult cases with neurological diseases. Rare diseases of the central nervous system carry the highest fatality rate (71.36/1,000). Rare diseases explain 4.2% of general population Years of Life Lost (YLLs), comparing to 1.2% attributable to infectious diseases and 2.6% to diabetes mellitus. Our estimates of the burden of rare diseases at population level confirm that these conditions are a relevant public health issue. Our snapshot of their epidemiology is important for public health planning purposes, going to show that population-based registries are useful tools for generating health indicators relating to a considerable number of rare diseases, rather than to specific conditions.
    Orphanet Journal of Rare Diseases 03/2014; 9(1):37. DOI:10.1186/1750-1172-9-37 · 3.36 Impact Factor
Show more