Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1.

Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.
The EMBO Journal (Impact Factor: 10.75). 10/2010; 29(20):3470-83. DOI: 10.1038/emboj.2010.221
Source: PubMed

ABSTRACT Wnt signalling is known to promote G1/S progression through the stimulation of gene expression, but whether this signalling regulates mitotic progression is not clear. Here, the function of dishevelled 2 (Dvl2), which transmits the Wnt signal, in mitosis was examined. Dvl2 localized to the spindles and spindle poles during mitosis. When cells were treated with nocodazole, Dvl2 was observed at the kinetochores (KTs). Dvl2 bound to and was phosphorylated at Thr206 by a mitotic kinase, Polo-like kinase 1 (Plk1), and this phosphorylation was required for spindle orientation and stable microtubule (MT)-KT attachment. Dvl2 was also found to be involved in the activation of a spindle assembly checkpoint (SAC) kinase, Mps1, and the recruitment of other SAC components, Bub1 and BubR1, to the KTs. However, the phosphorylation of Dvl2 by Plk1 was dispensable for SAC. Furthermore, Wnt receptors were involved in spindle orientation, but not in MT-KT attachment or SAC. These results suggested that Dvl2 is involved in mitotic progression by regulating the dynamics of MT plus-ends and the SAC in Plk1-dependent and -independent manners.

Download full-text


Available from: Koji Kikuchi, Jul 03, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frequent amplification and abundant expression of Nkd2 has been identified in malignant peripheral nerve sheath tumors (MPNSTs), dominant for genomic instability, who is involved in both Wnt pathway and EGFR signaling pathway. As a negative regulator of Wnt pathway, Nkd2 suppresses Wnt signaling by binding to Dvl1 and causing its ubiquitination followed by 26S proteasome degradation. On the other hand, it interacts with TGF-α for its transportation to basolateral plasma membrane in polarized epithelial cells. It is of interest to determine if Nkd2 over-expression contributes to tumorigenesis and genomic instablity. In this paper, we found that cells expressing NKD2 delayed mitotic exit stage after double thymidine block synchronization, but aneuploidy was not detected in these cells. This was further confirmed by Western blotting. In nocodazole-synchronised cells, Cyclin B1 degradation was delayed with Nkd2 over-expression compared to control group. Given many previous publications showed that Wnt pathway components are involved in mitotic progression. Further investigation on Nkd2’s function in mitosis might give more clues on MPNSTs pathological progression.
    Genes & genomics 10/2013; DOI:10.1007/s13258-013-0104-6 · 0.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most solid tumors are characterized by abnormal chromosome numbers (aneuploidy) and karyotypic profiling has shown that the majority of these tumors are heterogeneous and chromosomally unstable. Chromosomal instability (CIN) is defined as persistent mis-segregation of whole chromosomes and is caused by defects during mitosis. Large-scale genome sequencing has failed to reveal frequent mutations of genes encoding proteins involved in mitosis. On the contrary, sequencing has revealed that most mutated genes in cancer fall into a limited number of core oncogenic signaling pathways that regulate the cell cycle, cell growth, and apoptosis. This led to the notion that the induction of oncogenic signaling is a separate event from the loss of mitotic fidelity, but a growing body of evidence suggests that oncogenic signaling can deregulate cell cycle progression, growth, and differentiation as well as cause CIN. These new results indicate that the induction of CIN can no longer be considered separately from the cancer-associated driver mutations. Here we review the primary causes of CIN in mitosis and discuss how the oncogenic activation of key signal transduction pathways contributes to the induction of CIN.
    Frontiers in Oncology 06/2013; 3:164. DOI:10.3389/fonc.2013.00164
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnts activate at least two signaling pathways, the β-catenin-dependent and -independent pathways. Although the β-catenin-dependent pathway is known to contribute to G1/S transition, involvement of the β-catenin-independent pathway in cell cycle regulation remains unclear. Here, we show that Wnt5a signaling, which activates the β-catenin-independent pathway, is required for cytokinesis. Dishevelled 2 (Dvl2), a mediator of Wnt signaling pathways, was localized to the midbody during cytokinesis. Beside the localization of Dvl2, Fz2, a Wnt receptor, was detected in the midbody with an endosomal sorting complex required for transport III (ESCRT-III) subunit, CHMP4B. Depletion of Wnt5a, its receptors, and Dvl increased multinucleated cells. The phenotype observed in Wnt5a-depleted cells was rescued by the addition of purified Wnt5a but not that of Wnt3a, which is a ligand for the β-catenin-dependent pathway. Moreover, depletion of Wnt5a signaling caused loss of stabilized microtubules and mislocalization of CHMP4B in the midbody, which affected abscission. Inhibition of the stabilization of microtubules at the midbody lead to the mislocalization of CHMP4B, while depletion of CHMP4B did not affect the stabilization of microtubules, suggesting that the correct localization of CHMP4B depends on microtubules. Fz2 was localized to the midbody in a Rab11-dependent manner probably along stabilized microtubules. Fz2 formed a complex with CHMP4B upon Wnt5a stimulation and was required for proper localization of CHMP4B at the midbody, while CHMP4B was not necessary for the localization of Fz2. These results suggest that Wnt5a signaling positions ESCRT-III in the midbody properly for abscission by stabilizing midbody microtubules.
    Journal of Cell Science 07/2012; 125(20). DOI:10.1242/jcs.108142 · 5.33 Impact Factor