Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading

School of Polymer Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Biofabrication (Impact Factor: 4.29). 09/2010; 2(3):035006. DOI: 10.1088/1758-5082/2/3/035006
Source: PubMed


Hydroxyapatite (HA) is known to promote osteogenicity and enhance the mechanical properties of biopolymers. However, incorporating a large amount of HA into a porous biopolymer still remains a challenge. In the present work, a new method was developed to produce interconnected microporous poly(glycolic-co-lactic acid) (PLGA) with high HA nanoparticle loading. First, a ternary blend comprising PLGA/PS (polystyrene)/HA (40/40/20 wt%) was prepared by melt blending under conditions for formation of a co-continuous phase structure. Next, a dynamic annealing stage under small-strain oscillation was applied to the blend to facilitate nanoparticle redistribution. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The results from different characterizations suggested that the applied small-strain oscillation substantially accelerated the migration of HA nanoparticles during annealing from the PS phase to the PLGA phase; nearly all HA particles were uniformly presented in the PLGA phase after a short period of annealing. After dissolution of the PS phase, a PLGA material with interconnected microporous structure was successfully produced, with a high HA loading above 30 wt%. The mechanisms beneath the experimental observations, particularly on the enhanced particle migration process, were discussed, and strategies for producing highly particle loaded biopolymers with interconnected microporous structures were proposed.

Download full-text


Available from: Peter I Lelkes, Mar 05, 2015
25 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Co-continuous polymer blend has attracted broad interest in many technique fields due to its unique ability to be transferred into porous material with interconnected micro-channels. And combined with some surface patterning, it can provide material of hierarchical porous structure. A key challenge in the fabrication of material of desired morphology is the ability to control the interface movement. Here, we incorporate the thermo-geometrically controlled annealing and hot embossing to fabricate hierarchical microporous structures with well defined morphology and topography. Various novel structures demanded for many emerging applications can be created by judiciously using this newly developed technique.
    07/2011; 291-294:573-578. DOI:10.4028/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pure polymer films cannot meet the diverse range of controlled release and material properties demanded for the fabrication of medical implants or other devices. Additives are added to modulate and optimize thin films for the desired qualities. To characterize the property trends that depend on additive concentration, an assay was designed which involved casting a single polyester poly(lactic-co-glycolic acid) (PLGA) film that blends a linear gradient of any PLGA-soluble additive desired. Four gradient PLGA films were produced by blending polyethylene glycol or the more hydrophobic polypropylene glycol. The films were made using a custom glass gradient maker in conjunction with a 180 cm film applicator. These films were characterized in terms of thickness, percent additive, total polymer (PLGA+additive), and controlled drug release using drug-like fluorescent molecules such as coumarin 6 (COU) or fluorescein diacetate (FDAc). Material properties of elongation and modulus were also accessed. Linear gradients of additives were readily generated, with phase separation being the limiting factor. Additive concentration had a Pearson's correlation factor (R) of >0.93 with respect to the per cent total release after 30 days for all gradients characterized. Release of COU had a near zero-order release over the same time period, suggesting that coumarin analogs may be suitable for use in PLGA/polyethylene glycol or PLGA/polypropylene glycol matrices, with each having unique material properties while allowing tuneable drug release. The gradient casting method described has considerable potential in offering higher throughput for optimizing film or coating material properties for medical implants or other devices.
    Acta biomaterialia 01/2012; 8(6):2263-70. DOI:10.1016/j.actbio.2012.01.014 · 6.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The successful development of co-continuous structure from poly(L-lactide) (PLLA) blends by melt mixing with lower PLLA content is highly desired in preparing macroporous biomaterials. However, the low viscosity of PLLA makes it difficult to prepare co-continuous PLLA blends at low PLLA concentration. In this study, hydrophilic silica nanoparticle is adopted to control the morphology of co-continuous polystyrene (PS)/PLLA blends. The influence of nanoparticle concentration on the co-continuity intervals and rheological properties of PS/PLLA blends are examined. The morphological stability of blends against melt annealing is also determined and discussed with a conceptual coarsening model for co-continuous structure. The results demonstrate that the incorporation of silica nanoparticles into PS/PLLA blends can be used to prepare macroporous PLLA structure with controllable pore size at lower PLLA content.
    Journal of Materials Science 02/2012; 47(3):1339-1347. DOI:10.1007/s10853-011-5908-7 · 2.37 Impact Factor
Show more