A sensitive period for environmental regulation of eating behavior and leptin sensitivity.

Laboratory of Neurobiology, Scuola Normale Superiore, 56100 Pisa, Italy.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2010; 107(38):16673-8. DOI: 10.1073/pnas.0911832107
Source: PubMed

ABSTRACT Western lifestyle contributes to body weight dysregulation. Leptin down-regulates food intake by modulating the activity of neural circuits in the hypothalamic arcuate nucleus (ARC), and resistance to this hormone constitutes a permissive condition for obesity. Physical exercise modulates leptin sensitivity in diet-induced obese rats. The role of other lifestyle components in modulating leptin sensitivity remains elusive. Environmentally enriched mice were used to explore the effects of lifestyle change on leptin production/action and other metabolic parameters. We analyzed adult mice exposed to environmental enrichment (EE), which showed decreased leptin, reduced adipose mass, and increased food intake. We also analyzed 50-d-old mice exposed to either EE (YEE) or physical exercise (YW) since birth, both of which showed decreased leptin. YEE mice showed no change in food intake, increased response to leptin administration, increased activation of STAT3 in the ARC. The YW leptin-induced food intake response was intermediate between young mice kept in standard conditions and YEE. YEE exhibited increased and decreased ratios of excitatory/inhibitory synapses onto α-melanocyte-stimulating hormone and agouti-related peptide neurons of the ARC, respectively. We also analyzed animals as described for YEE and then placed in standard cages for 1 mo. They showed no altered leptin production/action but demonstrated changes in excitatory/inhibitory synaptic contacts in the ARC similar to YEE. EE and physical activity resulted in improved insulin sensitivity. In conclusion, EE and physical activity had an impact on feeding behavior, leptin production/action, and insulin sensitivity, and EE affected ARC circuitry. The leptin-hypothalamic axis is maximally enhanced if environmental stimulation is applied during development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.
    Frontiers in Aging Neuroscience 01/2014; 6:1. DOI:10.3389/fnagi.2014.00001 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptin, a peptide hormone secreted by adipocytes, plays a central role in controlling appetite and weight in both rodents and humans. Basic science and clinical research suggest that this hormone not only affects the regulation of the neuroendocrine axes, but also exerts effects on the central nervous system with subsequent alterations in psychological functions. For instance, leptin suppresses cortisol secretion during stress-related activation of the adrenal axis. As psychiatric disorders like depression are associated with hypercortisolism, leptin is proposed to exert anti-depressant-like effects due to its inhibition of chronically overactive hypothalamo-pituitary-adrenal axis function. Moreover, leptin status of depressed patients could serve as a prognostic marker for therapy response. Besides its influence on neuroendocrine pathways leptin seems to have direct central effects on brain development and neuroplasticity. Low leptin levels have been shown to be associated with increased risk of developing dementia, supporting the idea of a pro-cognitive effect of leptin. These areas may have direct clinical implications and deserve to be studied further in the future.
    Psychoneuroendocrinology 01/2015; 51:47–57. DOI:10.1016/j.psyneuen.2014.09.004 · 5.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to an enriched environment (EE) or the intake of a highly palatable diet may reduce the response to chronic stress in rodents. To further explore the relationships between EE, dietary intake and stress, male Sprague–Dawley rats were fed one of two diets for 5 weeks: high carbohydrate (HC) or “cafeteria” (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). In addition, they were either housed in empty cages or cages with EE. After the first two weeks, half of the animals from each group were stressed daily using a chronic variable stress (CVS) paradigm, while the other half were kept undisturbed. Rats were sacrificed at the end of the 5-week period. The effects of stress, enrichment and dietary intake on animal adiposity, serum lipids, and stress hormones were analyzed. Results showed an increase in intra-abdominal fat associated with the CAF diet and an increase in body weight gain associated with both the CAF diet and EE. Furthermore, the increase in ACTH associated with CVS was attenuated in the presence of EE and the CAF diet independently while the stress-induced increase in corticosterone was reduced by the combination of EE and CAF feeding. The present study provides evidence that the availability of a positive environment combined to a highly palatable diet increases resilience to the effects of CVS in rats. These results highlight the important place of palatable food and supportive environments in reducing central stress responses.
    Physiology & Behavior 11/2014; DOI:10.1016/j.physbeh.2014.11.003 · 3.03 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014