A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles.

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
Journal of Pharmaceutical Sciences (Impact Factor: 3.01). 12/2010; 99(12):4805-11. DOI: 10.1002/jps.22189
Source: PubMed

ABSTRACT This study describes development of a novel controlled drug release system for multiple drugs, it consisted of Chitosan nanoparticles/PCL composite electrospun nanofibers with core-sheath structures. Two model agents' rhodamine B and naproxen were successfully loaded in the core and sheath region respectively. The behavior of these two agents demonstrated a good controlled release and temporality, providing a new way to obtain program or temporality release for multiple agents. Particularly, this is potential applications in the field of tissue engineering, sutures and wound dressings.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Composite nanofibers have received a lot of attention due to their multifunctional behavior. Some interesting properties can be induced in nanofiber through incorporation of nanoparticles. In present work, PVA-pectin-magnetite nanofiber was prepared using electrospinning method. The morphological studies of the composite nanofibers were performed by AFM (atomic force microscope) and by FE-SEM (field emission scanning electron microscope). The chemical composition of the imaged nanofibers was determined from energy dispersive X-ray spectrometry (EDX). The magnetic property of the nanofibers was due to incorporation of Fe 3 O 4 nanoparticles, which was corroborated from VSM study exhibiting ferromagnetic property and negligible coercivity (saturation magnetization = 9. 34 emu/g). The Fe 3 O 4 phase was further confirmed form XRD study. The loading and release of diclofenac sodium drug from the as-synthesized nanofibers was studied by UV-Visible spectroscopy. The loading of drug was 56. 78 µg mg -1 and exhibited burst release at pH 7. 4 PBS. 630 Pritam Roy and Raj Kumar Dutta
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fabrication of nanofiber-based drug delivery system with controlled release property is of general interest in biomedical sciences. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded halloysite nanotubes/poly(lactic-co-glycolic acid) composite nanofibers (TCH/HNTs/PLGA), and evaluated the drug release and antibacterial activity of this drug delivery system. The structure, morphology, and mechanical properties of the formed electrospun TCH/HNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. We show that the incorporation of TCH-loaded HNTs within the PLGA nanofibers is able to improve the tensile strength and maintain the three-dimensional structure of the nanofibrous mats. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the fibrous scaffolds demonstrate that the developed TCH/HNTs/PLGA composite nanofibers are cytocompatible. More importantly, the TCH/HNTs/PLGA composite nanofibers are able to release the antibacterial drug TCH in a sustained manner for 42 days and display antimicrobial activity solely associated with the encapsulated TCH drug. With the improved mechanical durability, sustained drug release profile, good cytocompatibility, and non-compromised therapeutic efficacy, the developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for tissue engineering and drug delivery applications.
    Colloids and surfaces B: Biointerfaces 04/2013; 110C:148-155. DOI:10.1016/j.colsurfb.2013.04.036 · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclosporine A (CsA), a potent immunosuppressive drug with low water solubility, was dissolved in poly(L-lactic acid) (PLA) solution, and nanofibers were fabricated from this mixture by electrospinning technology. The addition of CsA into the PLA solution and the conditions of the electrospinning process did not influence the structure of the nanofibers nor affect the pharmacological activity of CsA. Study of the CsA release behavior in culture medium showed a release for at least 96 h. After the topical application of CsA-loaded nanofibers on skin allografts in vivo, the release was significantly slower and about 35% of the drug was still retained in the nanofibers on day 8. The addition of CsA-loaded nanofibers into cultures of mouse spleen cells stimulated with Concanavalin A selectively inhibited T cell functions; the activity of stimulated macrophages or the growth of non-T-cell populations was not suppressed in the presence of CsA-loaded nanofibers. The covering of skin allografts with CsA-loaded nanofibers significantly attenuated the local production of the proinflammatory cytokines IL-2, IFN-γ and IL-17. These results suggest that CsA-loaded electrospun nanofibers can serve as effective drug carriers for the local/topical suppression of an inflammatory reaction and simultaneously could be used as scaffolds for cell-based therapy.
    Journal of Controlled Release 07/2011; 156(3):406-12. DOI:10.1016/j.jconrel.2011.07.022 · 7.26 Impact Factor