Article

Surface diffusion driven nanoshell formation by controlled sintering of mesoporous nanoparticle aggregates.

Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.
Nanoscale (Impact Factor: 6.73). 08/2010; 2(8):1423-5. DOI: 10.1039/c0nr00228c
Source: PubMed

ABSTRACT We report a general method for the synthesis of hollow structures of a variety of functional inorganics by partial sintering of mesoporous nanocrystal aggregates. The formation of a thin shell initiates the transport of mass from the interior leading to growth of the shell. The principles are general and the hollow structures thus produced are attractive for many applications including catalysis, drug delivery and biosensing.

0 Bookmarks
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Controlled integration of multiple semiconducting oxides into each single unit of ordered nanotube arrays is highly desired in scientific research for the realization of more attractive applications. We herein report a diffusion-controlled solid-solid route to evolve simplex Co(CO3)0.5(OH)0.11H2O@TiO2 core-shell nanowire arrays (NWs) into CoO-CoTiO3 integrated hybrid nanotube arrays (NTs) with preserved morphology. During the evolution procedure, the decomposition of Co(CO3)0.5(OH)0.11H2O NWs into chains of CoCO3 nanoparticles initiates the diffusion process and promotes the interfacial solid-solid diffusion reaction even at a low temperature of 450 °C. The resulting CoO-CoTiO3 NTs possess well-defined sealed tubular geometries and a special "inner-outer" hybrid nature, which is suitable for application in Li-ion batteries (LIBs). As a proof-of-concept demonstration of the functions of such hybrid NTs in LIBs, CoO-CoTiO3 NTs are directly tested as LIB anodes, exhibiting both a high capacity (∼600 mA h g(-1) still remaining after 250 continuous cycles) and a much better cycling performance (no capacity fading within 250 total cycles) than CoO NWs. Our work presents not only a diffusion route for the formation of integrated hybrid NTs but also a new concept that can be employed as a general strategy to fabricate other oxide-based hybrid NTs for energy storage devices.
    Nanoscale 07/2013; · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron oxide/SnO(2) magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO(2) quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO(2) core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe(2)O(3) seeds and commercial SnO(2) products, mainly owing to the effective electron hole separation at the iron oxides/SnO(2) interfaces.
    Nanoscale 09/2011; 3(11):4676-84. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Capping-free and linker-free nanostructures/hybrids possess superior properties due to the presence of pristine surfaces and interfaces. In this review, various methods for synthesizing pristine nanomaterials are presented along with the general principles involved in their morphology control. In wet chemical synthesis, the interplay between various reaction parameters results in diverse morphology. The fundamental principles behind the evolution of morphology including nanoporous aggregates of metals and other inorganic materials, 2D nanocrystals of metals is elucidated by capping-free methods in aqueous medium. In addition, strategies leading to the attachment of bare noble metal nanoparticles to functional oxide supports/reduced graphene oxide has been demonstrated which can serve as a simple solution for obtaining thermally stable and efficient supported catalysts with free surfaces. Solution based synthesis of linker-free oxide-semiconductor hybrids and capping-free metal nanowires on substrates are also discussed in this context with ZnO/CdS and ultrathin Au nanowires as examples. A simple and rapid microwave-assisted method is highlighted for obtaining such hybrids which can be employed for high-yield production of similar materials.
    Nanoscale 05/2013; · 6.73 Impact Factor