Article

Serum transforming growth factor β1 during diabetes development in non‐obese diabetic mice and humans

Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy.
Clinical & Experimental Immunology (Impact Factor: 3.28). 12/2010; 162(3):407-14. DOI: 10.1111/j.1365-2249.2010.04253.x
Source: PubMed

ABSTRACT Recent data show that regulatory cells with transforming growth factor (TGF)-β1-dependent activity are able to restore self-tolerance in overtly diabetic non-obese diabetic (NOD) mice. Thus, TGF-β1 seems to have a relevant role in protection from autoimmune diabetes. Our aim was to investigate the possible significance of serum TGF-β1 measurement in the natural history of diabetes in NOD mice, as well as in children positive for at least one islet-related antibody. Serum TGF-β1 (both total and active) was measured by enzyme-linked immunosorbent assay at monthly intervals in 26 NOD mice during the spontaneous development of diabetes and, on a yearly basis, in nine siblings of patients with type 1 diabetes (T1D) with a follow-up of 4 years. Diabetes appeared between the 12th week of age and the end of the study period (36 weeks) in 17 mice. TGF-β1 serum level variations occurred in the prediabetic period in both NOD mice and humans and diabetes diagnosis followed a continuing reduction of active TGF-β1 (aTGF-β1) serum levels. In mice, aTGF-β1 serum levels measured at 4 weeks of age correlated positively with severity of insulitis, and negatively with percentage of insulin-positive cells. Our findings suggest that in NOD mice serum TGF-β1 levels during the natural history of the diabetes reflect the course of islet inflammation. The measurement of aTGF-β1 in islet-related antibody-positive subjects may provide insights into the natural history of prediabetic phase of T1D.

Download full-text

Full-text

Available from: Francesco Dotta, Aug 25, 2015
1 Follower
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes mellitus (T1DM) is a T cell-mediated autoimmune disease resulting in islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. T1DM has classically been attributed to the pathogenic actions of auto-reactive effector T cells (Teffs) on the β cell. Recent literature now suggests that a failure of a second T cell subtype, known as regulatory T cells (Tregs), plays a critical role in the development of T1DM. During immune homeostasis, Tregs counterbalance the actions of autoreactive Teff cells, thereby participating in peripheral tolerance. An imbalance in the activity between Teff and Tregs may be crucial in the breakdown of peripheral tolerance, leading to the development of T1DM. In this review, we summarize our current understanding of Treg function in health and in T1DM, and examine the effect of experimental therapies for T1DM on Treg cell number and function in both mice and humans.
    Current Molecular Medicine 06/2012; 12(10). DOI:10.2174/156652412803833634 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated τ protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects τ pathology is not fully understood. In this study, we investigated the impact of insulin dysfunction on τ phosphorylation in a genetic model of spontaneous type 1 diabetes: the nonobese diabetic (NOD) mouse. Brains of young and adult female NOD mice were examined, but young NOD mice did not display τ hyperphosphorylation. τ phosphorylation at τ-1 and pS422 epitopes was slightly increased in nondiabetic adult NOD mice. At the onset of diabetes, τ was hyperphosphorylated at the τ-1, AT8, CP13, pS262, and pS422. A subpopulation of diabetic NOD mice became hypothermic, and τ hyperphosphorylation further extended to paired helical filament-1 and TG3 epitopes. Furthermore, elevated τ phosphorylation correlated with an inhibition of protein phosphatase 2A (PP2A) activity. Our data indicate that insulin dysfunction in NOD mice leads to AD-like τ hyperphosphorylation in the brain, with molecular mechanisms likely involving a deregulation of PP2A. This model may be a useful tool to address further mechanistic association between insulin dysfunction and AD pathology.
    Diabetes 09/2012; 62(2). DOI:10.2337/db12-0187 · 8.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS/HYPOTHESIS: Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes. METHODS: The beta cell function of 118 patients with type 1 diabetes of duration of 0.75-4.97 years was tested using a standardised liquid mixed meal test (MMT). Serum samples obtained at -5 to 120 min were analysed by multiplex bead-based technology for proinflammatory (IL-6, TNF-α), anti-inflammatory (IL-1 receptor antagonist [IL-1RA]) and regulatory (IL-10, TGF-β1-3) cytokines, and by standard procedures for C-peptide. Differences in beta cell function between patient groups were assessed using stepwise multiple regression analysis adjusting for sex, age, duration of diabetes, BMI, HbA1c and fasting blood glucose. RESULTS: High fasting systemic concentrations of the proinflammatory cytokines IL-6 and TNF-α were associated with increased fasting and stimulated C-peptide concentrations even after adjustment for confounders (p < 0.03). Interestingly, increased concentrations of anti-inflammatory/regulatory IL-1RA, IL-10, TGF-β1 and TGF-β2 were associated with lower fasting and stimulated C-peptide levels (p < 0.04), losing significance on adjustment for anthropometric variables. During the MMT, circulating concentrations of IL-6 and TNF-α increased (p < 0.001) while those of IL-10 and TGF-β1 decreased (p < 0.02) and IL-1RA and TGF-β2 remained unchanged. CONCLUSIONS/INTERPRETATION: The association between better preserved beta cell function in longer term type 1 diabetes and increased systemic proinflammatory cytokines and decreased anti-inflammatory and regulatory cytokines is suggestive of ongoing inflammatory disease activity that might be perpetuated by the remaining beta cells. These findings should be considered when designing immune intervention studies aimed at patients with longer term type 1 diabetes and residual beta cell function.
    Diabetologia 03/2013; 56(6). DOI:10.1007/s00125-013-2883-3 · 6.88 Impact Factor
Show more