Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I.

Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Nature Immunology (Impact Factor: 26.2). 10/2010; 11(10):912-9. DOI: 10.1038/ni.1933
Source: PubMed

ABSTRACT Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25-mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The type I interferon (IFN) signaling response limits infection of many RNA and DNA viruses. To define key cell types that require type I IFN signaling to orchestrate immunity against West Nile virus (WNV), we infected mice with conditional deletions of the type I IFN receptor (IFNAR) gene. Deletion of the Ifnar gene in subsets of myeloid cells resulted in uncontrolled WNV replication, vasoactive cytokine production, sepsis, organ damage, and death that were remarkably similar to infection of Ifnar-/- mice completely lacking type I IFN signaling. In Mavs-/-×Ifnar-/- myeloid cells and mice lacking both Ifnar and the RIG-I-like receptor adaptor gene Mavs, cytokine production was muted despite high levels of WNV infection. Thus, in myeloid cells, viral infection triggers signaling through MAVS to induce proinflammatory cytokines that can result in sepsis and organ damage. Viral pathogenesis was caused in part by massive complement activation, as liver damage was minimized in animals lacking complement components C3 or factor B or treated with neutralizing anti-C5 antibodies. Disease in Ifnar-/- and CD11c Cre+Ifnarf/f mice also was facilitated by the proinflammatory cytokine TNF-α, as blocking antibodies diminished complement activation and prolonged survival without altering viral burden. Collectively, our findings establish the dominant role of type I IFN signaling in myeloid cells in restricting virus infection and controlling pathological inflammation and tissue injury.
    PLoS Pathogens 04/2014; 10(4):e1004086. · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Infections with West Nile virus (WNV) are typically asymptomatic, but some patients experience severe neurological disease and even death. Over 1500 fatalities have resulted from the more than 37,000 WNV cases in the USA between 1999 and 2012. While it is clear that age is a significant risk factor, markers of immune status associated with susceptibility to severe infections are incompletely defined. We have taken advantage of stable characteristics of individual status to profile immune markers from a stratified cohort of healthy subjects with a history of asymptomatic or severe infection with WNV. We characterized individual variations in antibody and serum cytokine levels and genome-wide transcriptional profiles of peripheral blood cells (PBMCs). While antibody levels were not significantly different between cohorts, we found that subjects with a history of severe infection had significantly lower levels of serum IL-4, and that these changes in IL-4 levels were associated with altered gene expression patterns in PBMCs. In addition, we identified a signature of 105 genes that displayed altered expression levels when comparing subjects with a history of asymptomatic or severe infection. These results suggest that systems-level analysis of immune system status can be used to identify factors relevant for susceptibility to severe infections, and specifically point to an important contribution for IL-4 in resistance to WNV infection.
    Viral immunology 03/2014; 27(2):39-47. · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The flaviviral encephalitis has now become a major health concern in global scale. The efficient detection of viral infection and induction of the innate antiviral response by host's innate immune system are crucial to determine the outcome of infection. The intracellular pattern recognition receptors TLRs, RLRs, NLRs and CLRs play a central role in detection and initiation of robust antiviral response against flaviviral infection. Both cytoplasmic RLRs, RIG-I and MDA5 have been shown to be implicated in sensing flaviviral genomic RNA. Similarly among TLRs mainly TLR3 and TLR7 are known to respond in flaviviral infections as they are known to sense dsRNA and ssRNA moiety as their natural cognate ligand. Several studies have also shown the roles of NLRs and CLRs in mounting an innate antiviral response against flavivirus but, it is yet to be completely understood. Until now only few reports have implicated NLRs and CLRs in induction of antiviral and proinflammatory state following flaviviral infection. The current review therefore aims to comprehensively analyze past as well as current understanding on the role of PRRs in flaviviral infections.
    Virus Research 01/2014; · 2.75 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014

Penghua Wang