Near-infrared fluorescent proteins

Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia.
Nature Methods (Impact Factor: 23.57). 10/2010; 7(10):827-9. DOI: 10.1038/nmeth.1501
Source: PubMed

ABSTRACT Fluorescent proteins with emission wavelengths in the near-infrared and infrared range are in high demand for whole-body imaging techniques. Here we report near-infrared dimeric fluorescent proteins eqFP650 and eqFP670. To our knowledge, eqFP650 is the brightest fluorescent protein with emission maximum above 635 nm, and eqFP670 displays the most red-shifted emission maximum and high photostability.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model.
    PLoS ONE 09/2014; 9(9):e107069. DOI:10.1371/journal.pone.0107069 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the considerable stability of green fluorescent proteins and their capacity to be readily permutated or mutated, they may be exploited in multiple ways to enhance the functionality of in vitro biosensors. Many possibilities, such as the formation of chimeras with other proteins or antibodies, as well as Förster resonance emission transfer performance, may be used for the highly sensitive and specific detection of the target molecules. This review considers the great potential of green fluorescent proteins as the fluorescent probing or recognition biomolecule in various in vitro biosensors applications, as well as obstacles associated with their use.
    Chemical Papers- Slovak Academy of Sciences 01/2014; DOI:10.2478/s11696-014-0588-9 · 1.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine.
    Vaccine 08/2014; 32(44). DOI:10.1016/j.vaccine.2014.08.045 · 3.49 Impact Factor


Available from
Jul 24, 2014