Article

Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias

Epigenetics Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
Epigenetics: official journal of the DNA Methylation Society (Impact Factor: 5.11). 01/2011; 6(1):34-44. DOI: 10.4161/epi.6.1.13313
Source: PubMed

ABSTRACT DNA methylation primarily occurs at CpG dinucleotides in mammals and is a common epigenetic mark that plays a critical role in the regulation of gene expression. Profiling DNA methylation patterns across the genome is vital to understand DNA methylation changes that occur during development and in disease phenotype. In this study, we compared two commonly used approaches to enrich for methylated DNA regions of the genome, namely methyl-DNA immunoprecipitation (MeDIP) that is based on enrichment with antibodies specific for 5'-methylcytosine (5MeC), and capture of methylated DNA using a methyl-CpG binding domain-based (MBD) protein to discover differentially methylated regions (DMRs) in cancer. The enriched methylated DNA fractions were interrogated on Affymetrix promoter tiling arrays and differentially methylated regions were identified. A detailed validation study of 42 regions was performed using Sequenom MassCLEAVE technique. This detailed analysis revealed that both enrichment techniques are sensitive for detecting DMRs and preferentially identified different CpG rich regions of the prostate cancer genome, with MeDIP commonly enriching for methylated regions with a low CpG density, while MBD capture favors regions of higher CpG density and identifies the greatest proportion of CpG islands. This is the first detailed validation report comparing different methylated DNA enrichment techniques for identifying regions of differential DNA methylation. Our study highlights the importance of understanding the nuances of the methods used for DNA genome-wide methylation analyses so that accurate interpretation of the biology is not overlooked.

2 Followers
 · 
351 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Within the past decade, epigenetic mechanisms and their modulation by dietary agents have gained major interest in the cancer prevention and nutrition community. Gene expression is epigenetically regulated by DNA methylation, histone tail modifications, and non-coding (micro) RNAs. Given the fact that epigenetic aberrations are reversible and represent potentially initiating events in the development of diseases, they have been identified as promising new targets for prevention strategies. Evidence is accumulating that dietary cancer chemopreventive agents from various sources, including green tea, soy, turmeric, broccoli, and other fruit and vegetables, can modulate DNA methylation, at least in vitro. To facilitate in vivo studies with focus on genome-wide modulation of DNA methylation, we here give an overview on current affinity enrichment- and bisulfite treatment-based methodologies for methylation profiling that might be useful for rodent models and human intervention studies. We also summarize genome-wide methylome analyses performed with dietary agents in vitro and in vivo and conclude with some practical considerations for the design of future dietary intervention studies.
    02/2015; 1(1):31-45. DOI:10.1007/s40495-014-0001-y
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen synthase kinase-3 (Gsk-3) is a key regulator of multiple signal transduction pathways. Recently, we described a novel role for Gsk-3 in the regulation of DNA methylation at imprinted loci in mouse embryonic stem cells (ESCs), suggesting that epigenetic changes regulated by Gsk-3 are likely an unrecognized facet of Gsk-3 signaling. Here, we extend our initial observation to the entire mouse genome by enriching for methylated DNA with the MethylMiner kit and performing next-generation sequencing (MBD-Seq) in wild-type and Gsk-3α(-/-);Gsk-3β(-/-) ESCs. Consistent with our previous data, we found that 77% of known imprinted loci have reduced DNA methylation in Gsk-3-deficient ESCs. More specifically, we unambiguously identified changes in DNA methylation within regions that have been confirmed to function as imprinting control regions (ICRs). In many cases, the reduced DNA methylation at imprinted loci in Gsk-3α(-/-);Gsk-3β(-/-) ESCs was accompanied by changes in gene expression as well. Furthermore, many of the Gsk-3-dependent differentially methylated regions (DMRs) are identical to the DMRs recently identified in uniparental ESCs. Our data demonstrate the importance of Gsk-3 activity in the maintenance of DNA methylation at a majority of the imprinted loci in ESCs, and emphasizes the importance for Gsk-3-mediated signal transduction on the epigenome. © 2015 by The American Society for Cell Biology.
    Molecular biology of the cell 04/2015; DOI:10.1091/mbc.E15-01-0013 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The number of different assays that has been published to study DNA methylation is extensive, complemented by recently described assays that test modifications of cytosine other than the most abundant 5-methylcytosine (5mC) variant. In this review, we describe the considerations involved in choosing how to study 5mC throughout the genome, with an emphasis on the common application of testing for epigenetic dysregulation in human disease. While microarray studies of 5mC continue to be commonly used, these lack the additional qualitative information from sequencing-based approaches that is increasingly recognized to be valuable. When we test the representation of functional elements in the human genome by several current assay types, we find that no survey approach interrogates anything more than a small minority of the nonpromoter cis-regulatory sites where DNA methylation variability is now appreciated to influence gene expression and to be associated with human disease. However, whole-genome bisulphite sequencing (WGBS) adds a substantial representation of loci at which DNA methylation changes are unlikely to be occurring with transcriptional consequences. Our assessment is that the most effective approach to DNA methylation studies in human diseases is to use targeted bisulphite sequencing of the cis-regulatory loci in a cell type of interest, using a capture-based or comparable system, and that no single design of a survey approach will be suitable for all cell types.
    Epigenetics & Chromatin 01/2015; 8:5. DOI:10.1186/1756-8935-8-5 · 4.46 Impact Factor