Article

Genome-wide analysis of novel splice variants induced by topoisomerase I poisoning shows preferential occurrence in genes encoding splicing factors.

Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA.
Cancer Research (Impact Factor: 9.28). 10/2010; 70(20):8055-65. DOI: 10.1158/0008-5472.CAN-10-2491
Source: PubMed

ABSTRACT RNA splicing is required to remove introns from pre-mRNA, and alternative splicing generates protein diversity. Topoisomerase I (Top1) has been shown to be coupled with splicing by regulating serine/arginine-rich splicing proteins. Prior studies on isolated genes also showed that Top1 poisoning by camptothecin (CPT), which traps Top1 cleavage complexes (Top1cc), can alter RNA splicing. Here, we tested the effect of Top1 inhibition on splicing at the genome-wide level in human colon carcinoma HCT116 and breast carcinoma MCF7 cells. The RNA of HCT116 cells treated with CPT for various times was analyzed with ExonHit Human Splice Array. Unlike other exon array platforms, the ExonHit arrays include junction probes that allow the detection of splice variants with high sensitivity and specificity. We report that CPT treatment preferentially affects the splicing of splicing-related factors, such as RBM8A, and generates transcripts coding for inactive proteins lacking key functional domains. The splicing alterations induced by CPT are not observed with cisplatin or vinblastine and are not simply due to reduced Top1 activity, as Top1 downregulation by short interfering RNA did not alter splicing like CPT treatment. Inhibition of RNA polymerase II (Pol II) hyperphosphorylation by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) blocked the splicing alteration induced by CPT, which suggests that the rapid Pol II hyperphosphorylation induced by CPT interferes with normal splicing. The preferential effect of CPT on genes encoding splicing factors may explain the abnormal splicing of a large number of genes in response to Top1cc.

1 Bookmark
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alternative 3'-terminal exons, which use intronic polyadenylation sites, are generally less conserved and expressed at lower levels than the last exon of genes. Here we discover a class of human genes, in which the last exon appeared recently during evolution, and the major gene product uses an alternative 3'-terminal exon corresponding to the ancestral last exon of the gene. This novel class of alternative 3'-terminal exons are downregulated on a large scale by doxorubicin, a cytostatic drug targeting topoisomerase II, and play a role in cell cycle regulation, including centromere-kinetochore assembly. The RNA-binding protein HuR/ELAVL1 is a major regulator of this specific set of alternative 3'-terminal exons. HuR binding to the alternative 3'-terminal exon in the pre-messenger RNA promotes its splicing, and is reduced by topoisomerase inhibitors. These findings provide new insights into the evolution, function and molecular regulation of alternative 3'-terminal exons.
    Nature Communications 01/2014; 5:3395. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Topoisomerase IB (Top1) inhibitors, such as camptothecin (CPT), stabilize the Top1-DNA cleavage complex in a DNA sequence-dependent manner. The sequence selectivity of Top1 inhibitors is important for targeting specific genomic sequences of therapeutic value. However, the molecular mechanisms underlying this selectivity remain largely unknown. We performed molecular dynamics simulations to delineate structural, dynamic and energetic features that contribute to the differential sequence selectivity of the Top1 inhibitors. We found the sequence selectivity of CPT to be highly correlated with the drug binding energies, dynamic and structural properties of the linker domain. Chemical insights, gained by per-residue binding energy analysis revealed that the non-polar interaction between CPT and nucleotide at the +1 position of the cleavage site was the major (favorable) contributor to the total binding energy. Mechanistic insights gained by a potential of mean force analysis implicated that the drug dissociation step was associated with the sequence selectivity. Pharmaceutical insights gained by our molecular dynamics analyses explained why LMP-776, an indenoisoquinoline derivative under clinical development at the National Institutes of Health, displays different sequence selectivity when compared with camptothecin and its clinical derivatives.
    Nucleic Acids Research 09/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Splicing is functionally coupled to transcription, linking the rate of RNA polymerase II (Pol II) elongation and the ability of splicing factors to recognize splice sites (ss) of various strengths. In most cases, slow Pol II elongation allows weak splice sites to be recognized, leading to higher inclusion of alternative exons. Using CFTR alternative exon 9 (E9) as a model, we show here that slowing down elongation can also cause exon skipping by promoting the recruitment of the negative factor ETR-3 onto the UG-repeat at E9 3' splice site, which displaces the constitutive splicing factor U2AF65 from the overlapping polypyrimidine tract. Weakening of E9 5' ss increases ETR-3 binding at the 3' ss and subsequent E9 skipping, whereas strengthening of the 5' ss usage has the opposite effect. This indicates that a delay in the cotranscriptional emergence of the 5' ss promotes ETR-3 recruitment and subsequent inhibition of E9 inclusion.
    Molecular cell 04/2014; · 14.61 Impact Factor

Full-text (2 Sources)

View
3 Downloads
Available from
May 29, 2014