Article

POMT1 is essential for protein O-mannosylation in mammals.

Institut für Pflanzenwissenschaften (HIP), Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
Methods in enzymology (Impact Factor: 2.19). 01/2010; 479:323-42. DOI: 10.1016/S0076-6879(10)79018-2
Source: PubMed

ABSTRACT Over the past decade it has emerged that O-mannosyl glycans are not restricted to yeast and fungi but are also present in higher eukaryotes up to humans. In mammals, the protein O-mannosyltransferases POMT1 and POMT2 act as a heteromeric complex to initiate O-mannosylation in the endoplasmic reticulum. In humans, mutations in POMT1 and POMT2 result in hypoglycosylation of alpha-dystroglycan (alpha-DG) thereby abolishing its binding to extracellular matrix ligands such as laminin. As a consequence, POMT mutations cause a heterogeneous group of severe recessive congenital muscular dystrophies in humans. However, little is known about the function of O-mannosyl glycans in mammals apart from its crucial role for the ligand binding abilities of alpha-DG. In this chapter we discuss the methods used to analyze the expression of Pomt1 in adult mouse organs and during embryo development. Further, we describe the generation and immunohistochemical analysis of Pomt1 knockout mice.

0 Followers
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Within the group of muscular dystrophies, dystroglycanopathies represent an important subgroup of recessively inherited disorders. Their severity varies from the relatively mild forms of adult-onset limb-girdle muscular dystrophy (LGMD), to the severe congenital muscular dystrophies (CMD) with cerebral and ocular involvement. We describe 2 consanguineous children of Pakistani origin, carrying a new homozygous missense mutation c.367G>A (p.Gly123Arg) in the ISPD gene. Mutations in this gene have been recently reported as a common cause of congenital and limb-girdle muscular dystrophy. Patient 1 is an 8-year-old female with an intermediate phenotype between CMD and early LGMD; patient 2 is a 20-month-old male and second cousin of patient 1, showing a CMD phenotype. Cognitive development, brain MRI, eye examination, electrocardiogram and echocardiogram were normal in both patients. To our knowledge, this is the first report on the co-occurrence of both a CMD/early LGMD intermediate phenotype and a CMD within the same family carrying a homozygous ISPD mutation. Copyright © 2014 Elsevier B.V. All rights reserved.
    Neuromuscular Disorders 09/2014; 25(1). DOI:10.1016/j.nmd.2014.08.007 · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years protein O-mannosylation has become a focus of attention as a pathomechanism underlying severe congenital muscular dystrophies associated with neuronal migration defects. A key feature of these disorders is the lack of O-mannosyl glycans on α-dystroglycan, resulting in abnormal basement membrane formation. Additional functions of O-mannosylation are still largely unknown. Here, we identify the essential cell-cell adhesion glycoprotein epithelial (E)-cadherin as an O-mannosylated protein and establish a functional link between O-mannosyl glycans and cadherin-mediated cell-cell adhesion. By genetically and pharmacologically blocking protein O-mannosyltransferases, we found that this posttranslational modification is essential for preimplantation development of the mouse embryo. O-mannosylation-deficient embryos failed to proceed from the morula to the blastocyst stage because of defects in the molecular architecture of cell-cell contact sites, including the adherens and tight junctions. Using mass spectrometry, we demonstrate that O-mannosyl glycans are present on E-cadherin, the major cell-adhesion molecule of blastomeres, and present evidence that this modification is generally conserved in cadherins. Further, the use of newly raised antibodies specific for an O-mannosyl-conjugated epitope revealed that these glycans are present on early mouse embryos. Finally, our cell-aggregation assays demonstrated that O-mannosyl glycans are crucial for cadherin-based cell adhesion. Our results redefine the significance of O-mannosylation in humans and other mammals, showing the immense impact of cadherins on normal as well as pathogenic cell behavior.
    Proceedings of the National Academy of Sciences 12/2013; DOI:10.1073/pnas.1316753110 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background α-Dystroglycan (α-DG) is heavily glycosylated within its central mucin-like domain. The glycosylation shell of α-dystroglycan is known to largely influence its functional properties toward extracellular ligands. The structural features of this α-dystroglycan domain have been poorly studied so far. For the first time, we have attempted a recombinant expression approach in E. coli cells, in order to analyze by biochemical and biophysical techniques this important domain of the α-dystroglycan core protein. Results We expressed the recombinant mucin-like domain of human α-dystroglycan in E. coli cells, and purified it as a soluble peptide of 174 aa. A cleavage event, that progressively emerges under repeated cycles of freeze/thaw, occurs at the carboxy side of Arg461, liberating a 151 aa fragment as revealed by mass spectrometry analysis. The mucin-like peptide lacks any particular fold, as confirmed by its hydrodynamic properties and its fluorescence behavior under guanidine hydrochloride denaturation. Dynamic light scattering has been used to demonstrate that this mucin-like peptide is arranged in a conformation that is prone to aggregation at room temperature, with a melting temperature of ~40°C, which indicates a pronounced instability. Such a conclusion has been corroborated by trypsin limited proteolysis, upon which the protein has been fully degraded in less than 60 min. Conclusions Our analysis indirectly confirms the idea that the mucin-like domain of α-dystroglycan needs to be extensively glycosylated in order to reach a stable conformation. The absence/reduction of glycosylation by itself may greatly reduce the stability of the dystroglycan complex. Although an altered pattern of α-dystroglycan O-mannosylation, that is not significantly changing its overall glycosylation fraction, represents the primary molecular clue behind currently known dystroglycanopathies, it cannot be ruled out that still unidentified forms of αDG-related dystrophy might originate by a more substantial reduction of α-dystroglycan glycosylation and by its consequent destabilization.
    BMC Biochemistry 07/2013; 14(1). DOI:10.1186/1471-2091-14-15 · 1.94 Impact Factor