Article

Sleeping like a baby--does gender influence infant arousability?

The Ritchie Centre, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
Sleep (Impact Factor: 5.1). 08/2010; 33(8):1055-60.
Source: PubMed

ABSTRACT Victims of the sudden infant death syndrome (SIDS) may have preexisting abnormalities in their arousal pathways, inhibiting the progression of subcortical activation (SCA) to full cortical arousal (CA). Approximately 60% of SIDS victims are male, and it has been suggested that male infants have delayed cortical maturation compared to females. We hypothesized that CA frequency would be lower and CA threshold would be higher in male infants during both active (AS) and quiet (QS) sleep.
50 healthy term infants (21 male, 29 female) were studied with daytime polysomnography at 2-4 weeks and 2-3 months after birth. Arousal from sleep was induced using a pulsatile air-jet to the nostrils at increasing pressures.
At 2-4 weeks, arousability from AS was similar in males and females, however during QS, male infants required a lower stimulus to induce SCA and CA. This gender difference in arousal threshold was not observed at 2-3 months. CA frequencies were similar between genders during both sleep states at both ages, though overall, CA was more frequent in AS than in QS.
This study demonstrated that at 2-4 weeks, male infants were easier to arouse than female infants during QS. There were no significant effects of gender on total arousability or SCA and CA frequencies at 2-3 months, the age of peak SIDS incidence. Thus, although male infants are at greater risk of SIDS than female infants, this difference is unlikely to be associated with gender differences in CA threshold or frequency.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although hypercapnia and/or hypoxia are frequently present during chronic lung disease of infancy and have also been implicated in sudden infant death syndrome (SIDS), their effect on cardiac autonomic regulation remains unclear. The authors' goal is to test that hypercapnia and hypoxia alter sleep-wake cycle-dependent heart rate variability (HRV) in the neonatal period. Experimental study measuring HRV during sleep states in lambs randomly exposed to hypercapnia, hypoxia, or air. University center for perinatal research in ovines (Sherbrooke, Canada). INSERM-university research unit for signal processing (Rennes, France). Six nonsedated, full-term lambs. Each lamb underwent polysomnographic recordings while in a chamber flowed with either air or 21% O(2) + 5% CO(2) (hypercapnia) or 10% O(2) + 0% CO(2) (hypoxia) on day 3, 4, and 5 of postnatal age. Hypercapnia increased the time spent in wakefulness and hypoxia the time spent in quiet sleep (QS). The state of alertness was the major determinant of HRV characterized with linear or nonlinear methods. Compared with QS, active sleep (AS) was associated with an overall increase in HRV magnitude and short-term self-similarity and a decrease in entropy of cardiac cycle length in air. This AS-related HRV pattern persisted in hypercapnia and was even more pronounced in hypoxia. Enhancement of AS-related sympathovagal coactivation in hypoxia, together with increased heart rate regularity, may be evidence that AS + hypoxia represent a particularly vulnerable state in early life. This should be kept in mind when deciding the optimal arterial oxygenation target in newborns and when investigating the potential involvement of hypoxia in SIDS pathogenesis. CITATION: Beuchée A; Hernández AI; Duvareille C; Daniel D; Samson N; Pladys P; Praud JP. Influence of hypoxia and hypercapnia on sleep state-dependent heart rate variability behavior in newborn lambs. SLEEP 2012;35(11):1541-1549.
    Sleep 01/2012; 35(11):1541-9. · 5.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that environmental and biological risk factors contribute to Sudden Infant Death Syndrome (SIDS). There is also growing consensus that SIDS requires the intersection of multiple risk factors that result in the failure of an infant to overcome cardio-respiratory challenges. Thus, the critical next steps in understanding SIDS are to unravel the physiological determinants that actually cause the sudden death, to synthesize how these determinants are affected by the known risk factors, and to develop novel ideas for SIDS prevention. In this review, we will examine current and emerging perspectives related to cardio-respiratory dysfunctions in SIDS. Specifically, we will review: (1) the role of the preBötzinger complex (preBötC) as a multi-functional network that is critically involved in the failure to adequately respond to hypoxic and hypercapnic challenges; (2) the potential involvement of the preBötC in the gender and age distributions that are characteristic for SIDS; (3) the link between SIDS and prematurity; and (4) the potential relationship between SIDS, auditory function, and central chemosensitivity. Each section underscores the importance of marrying the epidemiological and pathological data to experimental data in order to understand the physiological determinants of this syndrome. We hope that a better understanding will lead to novel ways to reduce the risk to succumb to SIDS.
    Respiratory Physiology & Neurobiology 06/2013; · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The preBötzinger complex (preBötC) is a critical neuronal network for the generation of breathing. Lesioning the preBötC abolishes respiration, while when isolated in vitro, the preBötC continues to generate respiratory rhythmic activity. Although several factors influence rhythmogenesis from this network, little is known about how gender may affect preBötC function. This study examines the influence of gender on respiratory activity and in vitro rhythmogenesis from the preBötC. Recordings of respiratory activity from neonatal mice (P10-13) show that sustained post-hypoxic depression occurs with greater frequency in males compared to females. Moreover, extracellular population recordings from the preBötC in neonatal brainstem slices (P10-13) reveal that the time to the first inspiratory burst following reoxygenation (TTFB) is significantly delayed in male rhythmogenesis when compared to the female rhythms. Altering activity of ATP sensitive potassium channels (KATP) with either the agonist, diazoxide, or the antagonist, tolbutamide, eliminates differences in TTFB. By contrast, glucose supplementation improves post-hypoxic recovery of female but not male rhythmogenesis. We conclude that post-hypoxic recovery of respiration is gender dependent, which is, in part, centrally manifested at the level of the preBötC. Moreover, these findings provide potential insight into the basis of increased male vulnerability in a variety of conditions such as Sudden Infant Death Syndrome (SIDS).
    PLoS ONE 01/2013; 8(4):e60695. · 3.53 Impact Factor

Full-text

Download
0 Downloads
Available from