Article

Nonparametric Mixture Models for Supervised Image Parcellation.

Computer Science and Artificial Intelligence Lab, MIT, USA.
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 09/2009; 12(WS):301-313.
Source: PubMed

ABSTRACT We present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various settings of a model parameter yield algorithms that use image intensity information differently in determining the weight of a training subject during fusion. One particular setting computes a single, global weight per training subject, whereas another setting uses locally varying weights when fusing the training data. The proposed nonparametric parcellation approach capitalizes on recently developed fast and robust pairwise image alignment tools. The use of multiple registrations allows the algorithm to be robust to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with expert manual labels for the white matter, cerebral cortex, ventricles and subcortical structures. The results demonstrate that the proposed nonparametric segmentation framework yields significantly better segmentation than state-of-the-art algorithms.

Download full-text

Full-text

Available from: Koen Van Leemput, Aug 23, 2015
0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Automatic segmentation of the heart’s left atrium offers great benefits for planning and outcome evaluation of atrial ablation procedures. However, the high anatomical variability of the left atrium presents significant challenges for atlas-guided segmentation. In this paper, we demonstrate an automatic method for left atrium segmentation using weighted voting label fusion and a variant of the demons registration algorithm adapted to handle images with different intensity distributions. We achieve accurate automatic segmentation that is robust to the high anatomical variations in the shape of the left atrium in a clinical dataset of MRA images.
    Statistical Atlases and Computational Models of the Heart, First International Workshop, STACOM 2010, and Cardiac Electrophysiological Simulation Challenge, CESC 2010, Held in Conjunction with MICCAI 2010, Beijing, China, September 20, 2010. Proceedings; 01/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a nonparametric, probabilistic model for the automatic segmentation of medical images, given a training set of images and corresponding label maps. The resulting inference algorithms rely on pairwise registrations between the test image and individual training images. The training labels are then transferred to the test image and fused to compute the final segmentation of the test subject. Such label fusion methods have been shown to yield accurate segmentation, since the use of multiple registrations captures greater inter-subject anatomical variability and improves robustness against occasional registration failures. To the best of our knowledge, this manuscript presents the first comprehensive probabilistic framework that rigorously motivates label fusion as a segmentation approach. The proposed framework allows us to compare different label fusion algorithms theoretically and practically. In particular, recent label fusion or multiatlas segmentation algorithms are interpreted as special cases of our framework. We conduct two sets of experiments to validate the proposed methods. In the first set of experiments, we use 39 brain MRI scans-with manually segmented white matter, cerebral cortex, ventricles and subcortical structures-to compare different label fusion algorithms and the widely-used FreeSurfer whole-brain segmentation tool. Our results indicate that the proposed framework yields more accurate segmentation than FreeSurfer and previous label fusion algorithms. In a second experiment, we use brain MRI scans of 282 subjects to demonstrate that the proposed segmentation tool is sufficiently sensitive to robustly detect hippocampal volume changes in a study of aging and Alzheimer's Disease.
    10/2010; 29(10):1714-29. DOI:10.1109/TMI.2010.2050897
Show more