Article

Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia.

Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, Virginia 24061, USA.
Biotechnology and Bioengineering (Impact Factor: 4.16). 01/2011; 108(1):22-30. DOI: 10.1002/bit.22919
Source: PubMed

ABSTRACT While many pretreatments attempt to improve the enzymatic digestibility of biomass by removing lignin, this study shows that improving the surface area accessible to cellulase is a more important factor for achieving a high sugar yield. Here we compared the pretreatment of switchgrass by two methods, cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) and soaking in aqueous ammonia (SAA). Following pretreatment, enzymatic hydrolysis was conducted at two cellulase loadings, 15 filter paper units (FPU)/g glucan and 3 FPU/g glucan, with and without BSA blocking of lignin absorption sites. The hydrolysis results showed that the lignin remaining after SAA had a significant negative effect on cellulase performance, despite the high level of delignification achieved with this pretreatment. No negative effect due to lignin was detected for COSLIF-treated substrate. SEM micrographs, XRD crystallinity measurements, and cellulose accessibility to cellulase (CAC) determinations confirmed that COSLIF fully disrupted the cell wall structure, resulting in a 16-fold increase in CAC, while SAA caused a 1.4-fold CAC increase. A surface plot relating the lignin removal, CAC, and digestibility of numerous samples (both pure cellulosic substrates and lignocellulosic materials pretreated by several methods) was also developed to better understand the relative impacts of delignification and CAC on glucan digestibility.

2 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A key focus in sustainable biofuel research is to develop cost-effective and energy-saving approaches to increase saccharification of lignocellulosic biomass. Numerous efforts have been made to identify critical issues in cellulose hydrolysis. Aerobic fungal species are an integral part of the carbon cycle, equip the hydrolytic enzyme consortium, and provide a gateway for understanding the systematic degradation of lignin, hemicelluloses, and cellulose. This study attempts to reveal the complex biological degradation process of lignocellulosic biomass by Phanerochaete chrysosporium in order to provide new knowledge for the development of energy-efficient biorefineries. In this study, we evaluated the performance of a fungal biodegradation model, Phanerochaete chrysosporium, in wheat straw through comprehensive analysis. We isolated milled straw lignin and cellulase enzyme-treated lignin from fungal-spent wheat straw to determine structural integrity and cellulase absorption isotherms. The results indicated that P. chrysosporium increased the total lignin content in residual biomass and also increased the cellulase adsorption kinetics in the resulting lignin. The binding strength increased from 117.4 mL/g to 208.7 mL/g in milled wood lignin and from 65.3 mL/g to 102.4 mL/g in cellulase enzyme lignin. A detailed structural dissection showed a reduction in the syringyl lignin/guaiacyl lignin ratio and the hydroxycinnamate/lignin ratio as predominant changes in fungi-spent lignin by heteronuclear single quantum coherence spectroscopy. P. chrysosporium shows a preference for degradation of phenolic terminals without significantly destroying other lignin components to unzip carbohydrate polymers. This is an important step in fungal growth on wheat straw. The phenolics presumably locate at the terminal region of the lignin moiety and/or link with hemicellulose to form the lignin-carbohydrate complex. Findings may inform the development of a biomass hydrolytic enzyme combination to enhance lignocellulosic biomass hydrolysis and modify the targets in plant cell walls.
    Biotechnology for Biofuels 12/2014; 7(1):161. · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in bioconversions have continuously sought the development of processing strategies to overcome the "close physical association" between plant cell wall polymers thought to significantly contribute to biomass recalcitrance [Adv Space Res 18:251-265, 1996],[ Science 315:804-807, 2007]. To a lesser extent, studies have sought to understand biophysical factors responsible for the resistance of lignocelluloses to enzymatic degradation. Provided here are data supporting our hypothesis that the inhibitory potential of different cell wall polymers towards enzymatic cellulose hydrolysis is related to how much these polymers constrain the water surrounding them. We believe the entropy-reducing constraint imparted to polymer associated water plays a negative role by increasing the probability of detrimental interactions such as junction zone formation and the non-productive binding of enzymes. Selected commercial lignocellulose-derived polymers, including hemicelluloses, pectins, and lignin, showed varied potential to inhibit 24-h cellulose conversion by a mix of purified cellobiohydrolase I and β-glucosidase. At low dry matter loadings (0.5% w/w), insoluble hemicelluloses were most inhibitory (reducing conversion relative to cellulose-only controls by about 80%) followed by soluble xyloglucan and wheat arabinoxylan (reductions of about 70% and 55%, respectively), while the lignin and pectins tested were the least inhibitory (approximately 20% reduction). Low field nuclear magnetic resonance (LF-NMR) relaxometry used to observe water-related proton relaxation in saturated polymer suspensions (10% dry solids, w/w) showed spin-spin, T2, relaxation time curves generally approached zero faster for the most inhibitory polymer preparations. The manner of this decline varied between polymers, indicating different biophysical aspects may differentially contribute to overall water constraint in each case. To better compare the LF-NMR data to inhibitory potential, T2 values from monocomponent exponential fits of relaxation curves were used as a measure of overall water constraint. These values generally correlated faster relaxation times (greater water constraint) with greater inhibition of the model cellulase system by the polymers. The presented correlation of cellulase inhibition and proton relaxation data provides support for our water constraint-biomass recalcitrance hypothesis. Deeper investigation into polymer-cellulose-cellulase interactions should help elucidate the types of interactions that may be propagating this correlation. If these observations can be verified to be more than correlative, the hypothesis and data presented suggest that a focus on water-polymer interactions and ways to alter them may help resolve key biological lignocellulose processing bottlenecks.
    Biotechnology for Biofuels 12/2014; 7(1):159. · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bioethanol production from biomass has high potential to substitute fossil fuels. Pretreatment of ligno-cellulosic materials is one of the vital keys for an eco-nomical process for bioethanol production. The main aim of the study was identifying the potent ethanol producing yeast strains (Pachysolen tannophilus, Candida intermedia, Pichia stipitis and Saccharomyces cerevisiae) using enzy-matic hydrolysis. Trichoderma reesei NRRL-3652 was used to produce cellulase and xylanase under solid state condition, using acid pretreated water hyacinth biomass as a substrate. The enzyme complex (cellulase 18.33 IU/mL and xylanase 31.43 IU/mL) thus produced was utilized for hydrolyses resulting in soluble sugars. The alterations in physical, chemical structures and delignification was determined by scanning electron microscopy, Fourier transformed infrared spectroscopy and X-ray diffraction. The best results of ethanol production were obtained with P. tannophilus reaching a maximum ethanol concentration of 0.043 g/g, followed by 0.021–0.037 g/g for C. inter-media and P. stipitis. On the contrary, ethanol yield of S. cerevisiae was decreased (0.015 g/g) due to non-assimila-tion of pentose sugar. This study represents the suitability of biologically delignified water hyacinth as a feedstock for fuel ethanol production.
    Waste and Biomass Valorization 01/2015;

Full-text

Download
62 Downloads
Available from
May 20, 2014