Increasing Cellulose Accessibility Is More Important Than Removing Lignin: A Comparison of Cellulose Solvent-Based Lignocellulose Fractionation and Soaking in Aqueous Ammonia

Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, Virginia 24061, USA.
Biotechnology and Bioengineering (Impact Factor: 4.16). 01/2011; 108(1):22-30. DOI: 10.1002/bit.22919
Source: PubMed

ABSTRACT While many pretreatments attempt to improve the enzymatic digestibility of biomass by removing lignin, this study shows that improving the surface area accessible to cellulase is a more important factor for achieving a high sugar yield. Here we compared the pretreatment of switchgrass by two methods, cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) and soaking in aqueous ammonia (SAA). Following pretreatment, enzymatic hydrolysis was conducted at two cellulase loadings, 15 filter paper units (FPU)/g glucan and 3 FPU/g glucan, with and without BSA blocking of lignin absorption sites. The hydrolysis results showed that the lignin remaining after SAA had a significant negative effect on cellulase performance, despite the high level of delignification achieved with this pretreatment. No negative effect due to lignin was detected for COSLIF-treated substrate. SEM micrographs, XRD crystallinity measurements, and cellulose accessibility to cellulase (CAC) determinations confirmed that COSLIF fully disrupted the cell wall structure, resulting in a 16-fold increase in CAC, while SAA caused a 1.4-fold CAC increase. A surface plot relating the lignin removal, CAC, and digestibility of numerous samples (both pure cellulosic substrates and lignocellulosic materials pretreated by several methods) was also developed to better understand the relative impacts of delignification and CAC on glucan digestibility.

Download full-text


Available from: Noppadon Sathitsuksanoh, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to evaluate the effect of the lignin content in four hybrid poplars for enhancing ethanol production. The study was conducted using steam explosion at 200 and 220°C for 5 min as a pre-treatment and then a simultaneous saccharification and fermentation (SSF) process with Saccharomyces cerevisiae. The composition of raw material, liquid and solid fraction obtained after pretreatment, enzymatic digestion, and ethanol production under the different experimental conditions were analyzed. The best results for bioethanol production were obtained from steam explosion pre-treatment carried out at 220°C with the hybrid poplar H-29, with cellulose recovery of over 63%, enzymatic hydrolysis yield of approximately 67%, and SSF yield of 70% of the theoretical value. However, the highest enzymatic hydrolysis yield (79%) was obtained for the hybrid poplar H-34, which has the lowest lignin content.
    International Journal of Green Energy 02/2015; DOI:10.1080/15435075.2014.887569 · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In acid hydrolysis of plant biomass, polysaccharides are converted to monosaccharides, which is basic raw material for biorefinery for fermentation based process. These monosaccharides, however, are not stable in acidic reaction medium, and are converted to organic acids via furans. Impact of hemicelluloses and lignin on acid hydrolysis of cellulose was investigated to focus on monosaccharide production with different degrees of cellulose purity. Two-step concentrated sulphuric acid process was applied to biomass for monosaccharide conversion. Kinetics of cellulose hydrolysis was analysed using 1H NMR spectroscopy. Higher reaction temperature in secondary hydrolysis caused severe degradation of the monosaccharides. In pure and holocellulose, further reaction of glucose in acidic reaction medium produced formic acid and levulinic acid. However, lignocellulosic biomass generated much less formic acid and levulinic acid under the same reaction condition. Humin (or pseudo-lignin) was also formed by the condensation of lignin and furans from monosaccharides in acidic reaction condition. Thus, the fermentation inhibitors, furans and formic acid, were generated in low quantities by lignocellulosic biomass than by delignified biomass such as pure cellulose or holocellulose.
    Energy 02/2014; 77. DOI:10.1016/ · 4.16 Impact Factor
  • Source