How cortical neurons help us see: Visual recognition in the human brain

Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
The Journal of clinical investigation (Impact Factor: 13.22). 09/2010; 120(9):3054-63. DOI: 10.1172/JCI42161
Source: PubMed


Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex.

Download full-text


Available from: Gabriel Kreiman, Aug 14, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
    Journal on Advances in Signal Processing 01/2012; 2012(1). DOI:10.1186/1687-6180-2012-140 · 0.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe architectural and timing constraints within the primate visual system support the conjecture that the early phase of object recognition in the brain is based on a feedforward feature-extraction hierarchy. To assess the plausibility of this conjecture in an engineering context, a difficult three-dimensional object recognition domain was developed to challenge a pure feedforward, receptive-field-based recognition model called SEEMORE. SEEMORE is based on 102 viewpoint-invariant nonlinear filters that as a group are sensitive to contour, texture, and color cues. The visual domains consists of 100 real objects of many different types, including rigid (shovel), nonrigid (telephone cord), and statistical (maple leaf cluster) objects and photographs of complex scenes. Objects were individually presented in color video images under normal room lighting conditions. Based on 12 to 36 training views, SEEMORE was required to recognize unnormalized test views of objects that could vary in position, orientation in the image plane and in depth, and scale (factor of 2); for nonrigid objects, recognition was also tested under gross shape deformations. Correct classification performance on a test set consisting of 600 novel object views was 97 percent (chance was 1 percent) and was comparable for the subset of 15 nonrigid objects. Performance was also measured under a variety of image degradation conditions, including partial occlusion, limited clutter, color shift, and additive noise. Generalization behavior and classification errors illustrated the emergence of several striking natural shape categories that are not explicitly encoded in the dimensions of the feature space. It is concluded that in the light of the vast hardware resources available in the ventral stream of the primate visual system relative to those exercised here, the appealingly simple feature-space conjecture remains worthy of serious consideration as a neurobiological model.
    Neural Computation 06/1997; 9(4):777-804. DOI:10.1162/neco.1997.9.4.777 · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vision research has often led to significant advances in our understanding of biology. There has also been particular success in translating basic research in the eye into breakthrough clinical therapies that mark important milestones for ophthalmology and also for medical research. Anti-VEGF therapy for age-related macular degeneration was named as one of the top ten science advancements of the year 2006. Only two years later, successful transfer of the RPE65 gene into retinal pigment epithelium of patients with Leber congenital amaurosis was noted as one of the most important clinical applications of gene therapy. The articles in this Review series outline current developments in vision research and highlight its continued importance in ophthalmology and medicine.
    The Journal of clinical investigation 09/2010; 120(9):3008-11. DOI:10.1172/JCI44158 · 13.22 Impact Factor
Show more