Article

Mutations in the antifolate-resistance-associated genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium vivax isolates from malaria-endemic countries.

Department of Parasitology, Kangwon National University College of Medicine, Chuncheon, Republic of Korea.
The American journal of tropical medicine and hygiene (Impact Factor: 2.74). 09/2010; 83(3):474-9. DOI: 10.4269/ajtmh.2010.10-0004
Source: PubMed

ABSTRACT Parasite dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) are known target enzymes of antifolate drugs used for the treatment and prophylaxis of persons with malaria. We sequenced the Plasmodium vivax dihydrofolate reductase (pvdhfr) and dihydropteroate synthase (pvdhps) genes to examine the prevalence and extent of point mutations in isolates from malaria-endemic countries. Double mutations (S58R and S117N) or quadruple mutations (F57L/I, S58R, T61M, and S117T) in the pvdhfr gene were found in isolates from Thailand (96.4%) and Myanmar (71.4%), but in only one isolate (1.0%) from Korea, where sulfadoxine-pyrimethamine has never been used. The pvdhfr point mutations correlated strongly with the pvdhps point mutations and ranged from single to triple mutations (S382A, A383G, and A553G), among isolates from Thailand, Myanmar, and Korea. These findings suggests that the prevalence of mutations in pvdhfr and pvdhps in P. vivax isolates from different malaria-endemic countries is associated with selection pressure imposed by sulfadoxine-pyrimethamine.

0 Followers
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria parasites in hotspots or suspected areas established in most endemic GMS countries implementing the National Malaria Control Programs, in addition to what is guided by the World Health Organization.
    Interdisciplinary Perspectives on Infectious Diseases 10/2014; 2014:969531. DOI:10.1155/2014/969531
  • Source
    Memórias do Instituto Oswaldo Cruz 01/2014; 106:130-133. · 1.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax is the predominant species of human malaria parasites present in China. Although sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been widely used for malaria treatment in China, the resistance profiles of these drugs are not available. Analysis of dihydrofolate reductase (dhfr), dihydropteroate synthase (dhps), and multidrug resistance (mdr-1) gene mutations in P. vivax isolates is a valuable molecular approach for mapping resistance to SP and CQ. This study investigates the prevalence of pvdhfr, pvdhps, and pvmdr-1 of P. vivax clinical isolates from China and provides baseline molecular epidemiologic data on SP- and CQ-associated resistance in P. vivax.
    Malaria Journal 09/2014; 13(1):346. DOI:10.1186/1475-2875-13-346 · 3.49 Impact Factor