Article

Mutations in the antifolate-resistance-associated genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium vivax isolates from malaria-endemic countries.

Department of Parasitology, Kangwon National University College of Medicine, Chuncheon, Republic of Korea.
The American journal of tropical medicine and hygiene (Impact Factor: 2.53). 09/2010; 83(3):474-9. DOI: 10.4269/ajtmh.2010.10-0004
Source: PubMed

ABSTRACT Parasite dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) are known target enzymes of antifolate drugs used for the treatment and prophylaxis of persons with malaria. We sequenced the Plasmodium vivax dihydrofolate reductase (pvdhfr) and dihydropteroate synthase (pvdhps) genes to examine the prevalence and extent of point mutations in isolates from malaria-endemic countries. Double mutations (S58R and S117N) or quadruple mutations (F57L/I, S58R, T61M, and S117T) in the pvdhfr gene were found in isolates from Thailand (96.4%) and Myanmar (71.4%), but in only one isolate (1.0%) from Korea, where sulfadoxine-pyrimethamine has never been used. The pvdhfr point mutations correlated strongly with the pvdhps point mutations and ranged from single to triple mutations (S382A, A383G, and A553G), among isolates from Thailand, Myanmar, and Korea. These findings suggests that the prevalence of mutations in pvdhfr and pvdhps in P. vivax isolates from different malaria-endemic countries is associated with selection pressure imposed by sulfadoxine-pyrimethamine.

0 Bookmarks
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax is a very common but non-cultivable malaria parasite affecting large human population in tropical world. To develop therapeutic reagents for this malaria, the parasite molecules involved in host-parasite interaction need to be investigated as they form effective vaccine or drug targets. We have investigated here the erythrocyte binding activity of a group of 15 different Plasmodium vivax tryptophan rich antigens (PvTRAgs). Only six of them, named PvTRAg, PvTRAg38, PvTRAg33.5, PvTRAg35.2 PvTRAg69.4 and PvATRAg74, showed binding to host erythrocytes. That the PvTRAgs binding to host erythrocytes was specific was evident from the competitive inhibition and saturation kinetics results. The erythrocyte receptors for these six PvTRAgs were resistant to trypsin and neuraminidase. These receptors were also chymotrypsin resistant except the receptors for PvTRAg38 and PvATRAg74 which were partially sensitive to this enzyme. The cross-competition studies showed that the chymotrypsin resistant RBC receptor for each of these two proteins was different. Altogether, there seems to be three RBC receptors for these six PvTRAgs and each PvTRAg has two RBC receptors. Both RBC receptors for PvTRAg, PvTRAg69.4, PvTRAg33.5, and PvTRAg35.2 were common to all these four proteins. These four PvTRAgs also shared one of their RBC receptors with PvTRAg38 as well as with PvATRAg74. The erythrocyte binding activity of these six PvTRAgs was inhibited by the respective rabbit polyclonal antibodies as well as by the natural antibodies produced by the P. vivax exposed individuals. It is concluded that only selective few PvTRAgs show erythrocyte binding activity involving different receptor molecules which can be blocked by the natural antibodies. Further studies on these receptor and ligands may lead to the development of therapeutic reagents for P. vivax malaria.
    PLoS ONE 01/2012; 7(12):e50754. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance of Plasmodium spp. to anti-malarial drugs is the primary obstacle in the fight against malaria, and molecular markers for the drug resistance have been applied as an adjunct in the surveillance of the resistance. In this study, we investigated the prevalence of mutations in pvmdr1, pvcrt-o, pvdhfr, and pvdhps genes in temperate-zone P. vivax parasites from central China. A total of 26 isolates were selected, including 8 which were previously shown to have a lower susceptibility to chloroquine in vitro. For pvmdr1, pvcrt-o, and pvdhps genes, no resistance-conferring mutations were discovered. However, a highly prevalent (69.2%), single-point mutation (S117N) was found in pvdhfr gene. In addition, tandem repeat polymorphisms existed in pvdhfr and pvdhps genes, which warranted further studies in relation to the parasite resistance to antifolate drugs. The study further suggests that P. vivax populations in central China may still be relatively susceptible to chloroquine and sulfadoxine-pyrimethamine.
    The Korean Journal of Parasitology 12/2012; 50(4):379-84. · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Can we predict the rise and spread of resistance to multi-drug therapy in a more predictable manner? We raise this question after analyzing over 500 Plasmodium vivax isolates collected from different, geographically isolated regions of China for sequence variation in and around the dhfr and dhps genes. We find: that resistance lineages have arisen at least once in each region; that there appears to have been little movement of parasite populations between these areas; and that highly resistant parasites contain dhfr and dhps alleles that are in linkage disequilibrium. We show a direct relationship between this linkage disequilibrium and a parasite's fitness in the absence of drug pressure. Such fitness would increase the spread of drug resistant phenotypes and is thus a selectable trait. These conclusions raise questions about the appropriate use of some other drug combinations to prevent and treat infection.
    Scientific Reports 01/2013; 3:1008. · 5.08 Impact Factor

Full-text (2 Sources)

View
10 Downloads
Available from
May 27, 2014